6,576 research outputs found

    Arsenic precipitation by an anaerobic arsenic-respiring bacterial strain isolated from the polluted sediments of Orbetello Lagoon, Italy

    Get PDF
    AIMS: To isolate and characterize an anaerobic bacterial strain from the deeper polluted lagoon sediment able to use as electron acceptors [As(V)] and sulfate (SO4(2-)), using lactate as an electron donor. METHODS AND RESULTS: Methods for isolation from polluted lagoon sediments included anaerobic enrichment cultures in the presence of As(V) and SO4(2-). Reduction of As(V) to As(III) was observed during the growth of the bacterial strain, and the final concentration of As(III) was lower than the initial As(V) one, suggesting the immobilization of As(III) in the yellow precipitate. The precipitate was identified by energy dispersive spectroscopy X-ray as arsenic sulfide. Scanning electron microscopy (SEM) revealed rod-shaped bacterial cells embedded in the precipitate, where net-like formations strictly related to the bacterial cells were visible. The surface of the precipitate showed the adhesion of bacterial cells, forming clusters. Transmission electron microscopy (TEM) also highlighted precipitates inside the bacterial cells and on their surface. Following 16S rRNA sequencing, the bacterial strain 063 was assigned to the genus Desulfosporosinus. CONCLUSIONS: This study reports, for the first time, the isolation from the polluted lagoon sediments of a strain capable of respiring and using As(V) and SO4(2-) as electron acceptors with lactate as the sole carbon and energy source with the formation of an arsenic sulfide precipitate. SIGNIFICANCE AND IMPACT OF THE STUDY: The identification of these properties provides novel insight into the possible use of the anaerobic strain in bioremediation processes and also adds to the knowledge on the biogeochemical cycling of arsenic

    Monotonicity formulas for obstacle problems with Lipschitz coefficients

    Get PDF
    We prove quasi-monotonicity formulas for classical obstacle-type problems with energies being the sum of a quadratic form with Lipschitz coefficients, and a Hölder continuous linear term.With the help of those formulas we are able to carry out the full analysis of the regularity of free-boundary points following the approaches by Caffarelli (J Fourier Anal Appl 4(4–5), 383–402, 1998), Monneau (J Geom Anal 13(2), 359–389, 2003), and Weiss (Invent Math 138(1), 23–50, 1999)

    A logarithmic epiperimetric inequality for the obstacle problem

    Full text link
    For the general obstacle problem, we prove by direct methods an epiperimetric inequality at regular and singular points, thus answering a question of Weiss (Invent. Math., 138 (1999), 23--50). In particular at singular points we introduce a new tool, which we call logarithmic epiperimetric inequality, which yields an explicit logarithmic modulus of continuity on the C1C^1 regularity of the singular set, thus improving previous results of Caffarelli and Monneau

    EChO Payload electronics architecture and SW design

    Full text link
    EChO is a three-modules (VNIR, SWIR, MWIR), highly integrated spectrometer, covering the wavelength range from 0.55 μ\mum, to 11.0 μ\mum. The baseline design includes the goal wavelength extension to 0.4 μ\mum while an optional LWIR module extends the range to the goal wavelength of 16.0 μ\mum. An Instrument Control Unit (ICU) is foreseen as the main electronic subsystem interfacing the spacecraft and collecting data from all the payload spectrometers modules. ICU is in charge of two main tasks: the overall payload control (Instrument Control Function) and the housekeepings and scientific data digital processing (Data Processing Function), including the lossless compression prior to store the science data to the Solid State Mass Memory of the Spacecraft. These two main tasks are accomplished thanks to the Payload On Board Software (P-OBSW) running on the ICU CPUs.Comment: Experimental Astronomy - EChO Special Issue 201

    On the H\uf6lder continuity for a class of vectorial problems

    Get PDF
    In this paper we prove local H\uf6lder continuity of vectorial local minimizers of special classes of integral functionals with rank-one and polyconvex integrands. The energy densities satisfy suitable structure assumptions and may have neither radial nor quasi-diagonal structure. The regularity of minimizers is obtained by proving that each component stays in a suitable De Giorgi class and, from this, we conclude about the H\uf6lder continuity. In the final section, we provide some non-trivial applications of our results

    Production of methylmercury by sulphate-reducing bacteria in sediments from the orbetello lagoon in presence of high macroalgal loads

    Get PDF
    Methylmercury is a potent neurotoxin affecting shallow-water ecosystems. Mercury polluted sediment samples were collected at six different sites in the Orbetello Lagoon (central Italy) characterized by high levels of silt, iron, manganese hydroxides, and organic matter originated the latter originated from the decomposition of macroalgae. Porous water pointed out the presence of sulphates, methylmercury, and sulphides. Slurries arranged in anaerobic conditions from sediment aliquots from the six sites, with the addition of ionic mercury, highlighted the production of methylmercury. Sulphate reducing bacteria (SRB) were quantified in lagoon sediments; furthermore, sediments cultured under anaerobic conditions showed SRBs active in mercury methylation. Anaerobic cultures of SRB, amended with ionic mercury, produced methylmercury during the growth of bacterial cells. The percentage of aerobic mercury resistant bacteria was pointed out at each sampling site, evidencing the presence of bioavailable mercury. Several aerobic mercury resistant bacteria were isolated and their level of resistance to inorganic and organic forms of mercury was evaluated. These isolates may be potentially used for eventual bioremediation processes. Mercury methylation by SRB in the Orbetello Lagoon sediments was described for the first time, focusing the attention on the need for possible bioremediation processes by using autochthonous mercury resistant bacteria. Moreover, the influence of algal biomass on mercury methylation was highlighted for the first time in this lagoon ecosystem. The importance of removing algal biomass, as it represents a source of organic matter favouring the process of mercury methylation, was strongly pointed out in this study

    The Visible and Near Infrared module of EChO

    Full text link
    The Visible and Near Infrared (VNIR) is one of the modules of EChO, the Exoplanets Characterization Observatory proposed to ESA for an M-class mission. EChO is aimed to observe planets while transiting by their suns. Then the instrument had to be designed to assure a high efficiency over the whole spectral range. In fact, it has to be able to observe stars with an apparent magnitude Mv= 9-12 and to see contrasts of the order of 10-4 - 10-5 necessary to reveal the characteristics of the atmospheres of the exoplanets under investigation. VNIR is a spectrometer in a cross-dispersed configuration, covering the 0.4-2.5 micron spectral range with a resolving power of about 330 and a field of view of 2 arcsec. It is functionally split into two channels respectively working in the 0.4-1 and 1.0-2.5 micron spectral ranges. Such a solution is imposed by the fact the light at short wavelengths has to be shared with the EChO Fine Guiding System (FGS) devoted to the pointing of the stars under observation. The spectrometer makes use of a HgCdTe detector of 512 by 512 pixels, 18 micron pitch and working at a temperature of 45K as the entire VNIR optical bench. The instrument has been interfaced to the telescope optics by two optical fibers, one per channel, to assure an easier coupling and an easier colocation of the instrument inside the EChO optical bench.Comment: 26 page
    • …