2,572 research outputs found

    An Understanding of the Shoulder of Giants: Jovian Planets around Late K Dwarf Stars and the Trend with Stellar Mass

    Get PDF
    Analyses of exoplanet statistics suggest a trend of giant planet occurrence with host star mass, a clue to how planets like Jupiter form. One missing piece of the puzzle is the occurrence around late K dwarf stars (masses of 0.5-0.75Msun and effective temperatures of 3900-4800K). We analyzed four years of Doppler radial velocities data of 110 late K dwarfs, one of which hosts two previously reported giant planets. We estimate that 4.0+/-2.3% of these stars have Saturn-mass or larger planets with orbital periods <245d, depending on the planet mass distribution and RV variability of stars without giant planets. We also estimate that 0.7+/-0.5% of similar stars observed by Kepler have giant planets. This Kepler rate is significantly (99% confidence) lower than that derived from our Doppler survey, but the difference vanishes if only the single Doppler system (HIP 57274) with completely resolved orbits is considered. The difference could also be explained by the exclusion of close binaries (without giant planets) from the Doppler but not Kepler surveys, the effect of long-period companions and stellar noise on the Doppler data, or an intrinsic difference between the two populations. Our estimates for late K dwarfs bridge those for solar-type stars and M dwarfs and support a positive trend with stellar mass. Small sample size precludes statements about finer structure, e.g. a "shoulder" in the distribution of giant planets with stellar mass. Future surveys such as the Next Generation Transit Survey and the Transiting Exoplanet Satellite Survey will ameliorate this deficiency.Comment: Accepted to The Astrophysical Journa

    Cavity-Catalyzed Hydrogen Transfer Dynamics in an Entangled Molecular Ensemble under Vibrational Strong Coupling

    Full text link
    Microcavities have been shown to influence the reactivity of molecular ensembles by strong coupling of molecular vibrations to quantized cavity modes. In quantum mechanical treatments of such scenarios, frequently idealized models with single molecules and scaled, effective molecule-cavity interactions or alternatively ensemble models with simplified model Hamiltonians are used. In this work, we go beyond these models by applying an ensemble variant of the Pauli-Fierz Hamiltonian for vibro-polaritonic chemistry and numerically solve the underlying time-dependent Schr\"odinger equation to study the cavity-induced quantum dynamics in an ensemble of thioacetylacetone (TAA) molecules undergoing hydrogen transfer under vibrational strong coupling (VSC) conditions. Beginning with a single molecule coupled to a single cavity mode, we show that the cavity indeed enforces hydrogen transfer from an enol to an enethiol configuration with transfer rates significantly increasing with light-matter interaction strength. This positive effect of the cavity on reaction rates is different from several other systems studied so far, where a retarding effect of the cavity on rates was found. It is argued that the cavity ``catalyzes'' the reaction by transfer of virtual photons to the molecule. The same concept applies to ensembles with up to N=20N=20 TAA molecules coupled to a single cavity mode, where an additional, significant, ensemble-induced collective isomerization rate enhancement is found. The latter is traced back to complex entanglement dynamics of the ensemble, which we quantify by means of von Neumann-entropies. A non-trivial dependence of the dynamics on ensemble size is found, clearly beyond scaled single-molecule models, which we interpret as transition from a multi-mode Rabi to a system-bath-type regime as NN increases.Comment: Manuscript 9 pages, 5 figures (minor changes in v2). Supplementary Information 7 pages, 5 figures (Section III rewritten in v2 after peer-review

    A Third Planet Orbiting HIP 14810

    Get PDF
    We present new precision radial velocities and a three-planet Keplerian orbit fit for the V = 8.5, G5 V star HIP 14810. We began observing this star at Keck Observatory as part of the N2K Planet Search Project. Wright et al. (2007) announced the inner two planets to this system, and subsequent observations have revealed the outer planet planet and the proper orbital solution for the middle planet. The planets have minimum masses of 3.9, 1.3, and 0.6 M_Jup and orbital periods of 6.67, 147.7, and 952 d, respectively. We have numerically integrated the family of orbital solutions consistent with the data and find that they are stable for at least 10^6 yr. Our photometric search shows that the inner planet does not transit.Comment: ApJL, accepte

    The 55 Cancri Planetary System: Fully Self-Consistent N-body Constraints and a Dynamical Analysis

    Get PDF
    We present an updated study of the planets known to orbit 55 Cancri A using 1,418 high-precision radial velocity observations from four observatories (Lick, Keck, Hobby-Eberly Telescope, Harlan J. Smith Telescope) and transit time/durations for the inner-most planet, 55 Cancri "e" (Winn et al. 2011). We provide the first posterior sample for the masses and orbital parameters based on self-consistent n-body orbital solutions for the 55 Cancri planets, all of which are dynamically stable (for at least 10810^8 years). We apply a GPU version of Radial velocity Using N-body Differential evolution Markov Chain Monte Carlo (RUN DMC; B. Nelson et al. 2014) to perform a Bayesian analysis of the radial velocity and transit observations. Each of the planets in this remarkable system has unique characteristics. Our investigation of high-cadence radial velocities and priors based on space-based photometry yields an updated mass estimate for planet "e" (8.09±0.268.09\pm0.26 M_\oplus), which affects its density (5.51±1.001.325.51\pm^{1.32}_{1.00} g cm3^{-3}) and inferred bulk composition. Dynamical stability dictates that the orbital plane of planet "e" must be aligned to within 60o60^o of the orbital plane of the outer planets (which we assume to be coplanar). The mutual interactions between the planets "b" and "c" may develop an apsidal lock about 180o180^o. We find 36-45% of all our model systems librate about the anti-aligned configuration with an amplitude of 51o±10o6o51^o\pm^{6^o}_{10^o}. Other cases showed short-term perturbations in the libration of ϖbϖc\varpi_b-\varpi_c, circulation, and nodding, but we find the planets are not in a 3:1 mean-motion resonance. A revised orbital period and eccentricity for planet "d" pushes it further toward the closest known Jupiter analog in the exoplanet population.Comment: 12 pages, 5 figures, 4 tables, accepted to MNRAS. Figure 2 (left) is updated from published version. Posterior samples available at http://www.personal.psu.edu/ben125/Downloads.htm

    Using mobile phones in pub talk

    Get PDF
    We present the findings from a study of how people interleave mobile phone use with conversation in pubs. Our findings, informed by ethnomethodology and conversation analysis, unpack the interactional methods through which groups of people in pubs occasioned, sustained, and disengaged from mobile device use during conversation with friends. Fundamentally, the work that is done consists of various methods of accounting for mobile device use, and displaying involvement in social interaction while the device is used. We highlight multiple examples of the nuanced ways in which interleaving is problematic in interaction, and relate our findings to the CSCW and HCI literature on collocated interaction. We conclude by considering avenues for future research, and discuss how we may support or disrupt interleaving practices through design to overcome the highlighted interactional troubles
    corecore