2,839 research outputs found

    INPOP08, a 4-D planetary ephemeris: From asteroid and time-scale computations to ESA Mars Express and Venus Express contributions

    Full text link
    The latest version of the planetary ephemerides developed at the Paris Observatory and at the Besancon Observatory is presented here. INPOP08 is a 4-dimension ephemeris since it provides to users positions and velocities of planets and the relation between TT and TDB. Investigations leading to improve the modeling of asteroids are described as well as the new sets of observations used for the fit of INPOP08. New observations provided by the European Space Agency (ESA) deduced from the tracking of the Mars Express (MEX) and Venus Express (VEX) missions are presented as well as the normal point deduced from the Cassini mission. We show the huge impact brought by these observations in the fit of INPOP08, especially in terms of Venus, Saturn and Earth-Moon barycenter orbits.Comment: 14 pages. submitted to A&A. accepted in A&

    The Large Quasar Reference Frame (LQRF) - an optical representation of the ICRS

    Full text link
    The large number and all-sky distribution of quasars from different surveys, along with their presence in large, deep astrometric catalogs,enables the building of an optical materialization of the ICRS following its defining principles. Namely: that it is kinematically non-rotating with respect to the ensemble of distant extragalactic objects; aligned with the mean equator and dynamical equinox of J2000; and realized by a list of adopted coordinates of extragalatic sources. Starting from the updated and presumably complete LQAC list of QSOs, the initial optical positions of those quasars are found in the USNO B1.0 and GSC2.3 catalogs, and from the SDSS DR5. The initial positions are next placed onto UCAC2-based reference frames, following by an alignment with the ICRF, to which were added the most precise sources from the VLBA calibrator list and the VLA calibrator list - when reliable optical counterparts exist. Finally, the LQRF axes are inspected through spherical harmonics, contemplating to define right ascension, declination and magnitude terms. The LQRF contains J2000 referred equatorial coordinates for 100,165 quasars, well represented across the sky, from -83.5 to +88.5 degrees in declination, and with 10 arcmin being the average distance between adjacent elements. The global alignment with the ICRF is 1.5 mas, and the individual position accuracies are represented by a Poisson distribution that peaks at 139 mas in right ascension and 130 mas in declination. It is complemented by redshift and photometry information from the LQAC. The LQRF is designed to be an astrometric frame, but it is also the basis for the GAIA mission initial quasars' list, and can be used as a test bench for quasars' space distribution and luminosity function studies.Comment: 23 pages, 23 figures, 6 tables Accepted for publication by Astronomy & Astrophysics, on 25 May 200

    Ultraviolet and visible photometry of asteroid (21) Lutetia using the Hubble Space Telescope

    Full text link
    The asteroid (21) Lutetia is the target of a planned close encounter by the Rosetta spacecraft in July 2010. To prepare for that flyby, Lutetia has been extensively observed by a variety of astronomical facilities. We used the Hubble Space Telescope (HST) to determine the albedo of Lutetia over a wide wavelength range, extending from ~150 nm to ~700 nm. Using data from a variety of HST filters and a ground-based visible light spectrum, we employed synthetic photometry techniques to derive absolute fluxes for Lutetia. New results from ground-based measurements of Lutetia's size and shape were used to convert the absolute fluxes into albedos. We present our best model for the spectral energy distribution of Lutetia over the wavelength range 120-800 nm. There appears to be a steep drop in the albedo (by a factor of ~2) for wavelengths shorter than ~300 nm. Nevertheless, the far ultraviolet albedo of Lutetia (~10%) is considerably larger than that of typical C-chondrite material (~4%). The geometric albedo at 550 nm is 16.5 +/- 1%. Lutetia's reflectivity is not consistent with a metal-dominated surface at infrared or radar wavelengths, and its albedo at all wavelengths (UV-visibile-IR-radar) is larger than observed for typical primitive, chondritic material. We derive a relatively high FUV albedo of ~10%, a result that will be tested by observations with the Alice spectrograph during the Rosetta flyby of Lutetia in July 2010.Comment: 14 pages, 2 tables, 8 figure

    New families of symplectic splitting methods for numerical integration in dynamical astronomy

    Get PDF
    We present new splitting methods designed for the numerical integration of near-integrable Hamiltonian systems, and in particular for planetary N-body problems, when one is interested in very accurate results over a large time span. We derive in a systematic way an independent set of necessary and sufficient conditions to be satisfied by the coefficients of splitting methods to achieve a prescribed order of accuracy. Splitting methods satisfying such (generalized) order conditions are appropriate in particular for the numerical simulation of the Solar System described in Jacobi coordinates. We show that, when using Poincar\'e Heliocentric coordinates, the same order of accuracy may be obtained by imposing an additional polynomial equation on the coefficients of the splitting method. We construct several splitting methods appropriate for each of the two sets of coordinates by solving the corresponding systems of polynomial equations and finding the optimal solutions. The experiments reported here indicate that the efficiency of our new schemes is clearly superior to previous integrators when high accuracy is required.Comment: 24 pages, 2 figures. Revised version, accepted for publication in Applied Numerical Mathematic

    Radioscience simulations in General Relativity and in alternative theories of gravity

    Full text link
    In this communication, we focus on the possibility to test GR with radioscience experiments. We present a new software that in a first step simulates the Range/Doppler signals directly from the space time metric (thus in GR and in alternative theories of gravity). In a second step, a least-squares fit of the involved parameters is performed in GR. This software allows one to get the order of magnitude and the signature of the modifications induced by an alternative theory of gravity on radioscience signals. As examples, we present some simulations for the Cassini mission in Post-Einsteinian gravity and with the MOND External Field Effect.Comment: 4 pages; Proceedings of "Les Rencontres de Moriond 2011 - Gravitation session

    <i>Gaia</i> Data Release 1. Summary of the astrometric, photometric, and survey properties

    Get PDF
    Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. Aims. A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Methods. The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. Results. Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the HIPPARCOS and Tycho-2 catalogues – a realisation of the Tycho-Gaia Astrometric Solution (TGAS) – and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of ∌3000 Cepheid and RR-Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr−1 for the proper motions. A systematic component of ∌0.3 mas should be added to the parallax uncertainties. For the subset of ∌94 000 HIPPARCOS stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr−1. For the secondary astrometric data set, the typical uncertainty of the positions is ∌10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to ∌0.03 mag over the magnitude range 5 to 20.7. Conclusions. Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data

    Phenomenology of the Lense-Thirring effect in the Solar System

    Full text link
    Recent years have seen increasing efforts to directly measure some aspects of the general relativistic gravitomagnetic interaction in several astronomical scenarios in the solar system. After briefly overviewing the concept of gravitomagnetism from a theoretical point of view, we review the performed or proposed attempts to detect the Lense-Thirring effect affecting the orbital motions of natural and artificial bodies in the gravitational fields of the Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of the impact of several sources of systematic uncertainties of dynamical origin to realistically elucidate the present and future perspectives in directly measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in Astrophysics and Space Science (ApSS). Some uncited references in the text now correctly quoted. One reference added. A footnote adde

    Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system

    Full text link
    We analytically compute the long-term orbital variations of a test particle orbiting a central body acted upon by an incident monochromatic plane gravitational wave. We assume that the characteristic size of the perturbed two-body system is much smaller than the wavelength of the wave. Moreover, we also suppose that the wave's frequency is much smaller than the particle's orbital one. We make neither a priori assumptions about the direction of the wavevector nor on the orbital geometry of the planet. We find that, while the semi-major axis is left unaffected, the eccentricity, the inclination, the longitude of the ascending node, the longitude of pericenter and the mean anomaly undergo non-vanishing long-term changes. They are not secular trends because of the slow modulation introduced by the tidal matrix coefficients and by the orbital elements themselves. They could be useful to indepenedently constrain the ultra-low frequency waves which may have been indirectly detected in the BICEP2 experiment. Our calculation holds, in general, for any gravitationally bound two-body system whose characteristic frequency is much larger than the frequency of the external wave. It is also valid for a generic perturbation of tidal type with constant coefficients over timescales of the order of the orbital period of the perturbed particle.Comment: LaTex2e, 24 pages, no figures, no tables. Changes suggested by the referees include