4,390 research outputs found

    Circulating tumor cells in bladder cancer: a new horizon of liquid biopsy for precision medicine

    Get PDF
    Clinical management of bladder cancer (BC) patients offers several challenges such as poor outcome because of elevated recurrence rates and lack of response to chemotherapy [1]. So, there is a need of noninvasive prognostic and predictive tools able to allow risk category assessment and real-time supervision of drug response [2]. Recently, circulating tumor cells (CTCs) have been proposed as prognostic tool able to improve cancer patients' clinical management [3], [4], [5], [6]. CTCs detached from the primary tumor, enter the bloodstream and colonize distant organ, promoting cancer dissemination [7]. Emerging technologies are available to isolate CTC from patient's blood to provide a "liquid biopsy". Such a tool provides a molecular picture of the metastatic disease, useful to assess the cause of drug resistance onset [3, 6, 8], [9], [10], [11], [12], [13], [14]. CTC are very scarce in the blood, so robust methods are still needed for their routine use in laboratory practice [3, 11]. Several technologies have been developed in the last few years [11, 12] and several studies have been performed on the potential use of CTCs in bladder cancer patient clinical management

    Amplituhedron meets Jeffrey-Kirwan Residue

    Get PDF
    The tree amplituhedra A^(m)_n,k are mathematical objects generalising the notion of polytopes into the Grassmannian. Proposed for m=4 as a geometric construction encoding tree-level scattering amplitudes in planar N=4 super Yang-Mills theory, they are mathematically interesting for any m. In this paper we strengthen the relation between scattering amplitudes and geometry by linking the amplituhedron to the Jeffrey-Kirwan residue, a powerful concept in symplectic and algebraic geometry. We focus on a particular class of amplituhedra in any dimension, namely cyclic polytopes, and their even-dimensional conjugates. We show how the Jeffrey-Kirwan residue prescription allows to extract the correct amplituhedron volume functions in all these cases. Notably, this also naturally exposes the rich combinatorial and geometric structures of amplituhedra, such as their regular triangulations.Peer reviewedFinal Accepted Versio

    Fiber Bragg Grating Sensor Networks Enhance the In Situ Real-Time Monitoring Capabilities of MLI Thermal Blankets for Space Applications

    Get PDF
    The utilization of Fiber Bragg Grating (FBG) sensors in innovative optical sensor networks has displayed remarkable potential in providing precise and dependable thermal measurements in hostile environments on Earth. Multi-Layer Insulation (MLI) blankets serve as critical components of spacecraft and are employed to regulate the temperature of sensitive components by reflecting or absorbing thermal radiation. To enable accurate and continuous monitoring of temperature along the length of the insulative barrier without compromising its flexibility and low weight, FBG sensors can be embedded within the thermal blanket, thereby enabling distributed temperature sensing. This capability can aid in optimizing the thermal regulation of the spacecraft and ensuring the reliable and safe operation of vital components. Furthermore, FBG sensors offer sev eral advantages over traditional temperature sensors, including high sensitivity, immunity to electromagnetic interference, and the ability to operate in harsh environments. These properties make FBG sensors an excellent option for thermal blankets in space applications, where precise temperature regulation is crucial for mission success. Nevertheless, the calibration of temperature sensors in vacuum conditions poses a significant challenge due to the lack of an appropriate calibration reference. Therefore, this paper aimed to investigate innovative solutions for calibrating temperature sensors in vacuum conditions. The proposed solutions have the potential to enhance the accuracy and reliability of temperature measurements in space applications, which can enable engineers to develop more resilient and dependable spacecraft systems

    The Momentum Amplituhedron

    Get PDF
    In this paper we define a new object, the momentum amplituhedron, which is the long sought-after positive geometry for tree-level scattering amplitudes in N = 4 super Yang-Mills theory in spinor helicity space. Inspired by the construction of the ordinary amplituhedron, we introduce bosonized spinor helicity variables to represent our external kinematical data, and restrict them to a particular positive region. The momentum amplituhedron M n,k is then the image of the positive Grassmannian via a map determined by such kinematics. The scattering amplitudes are extracted from the canonical form with logarithmic singularities on the boundaries of this geometry.Peer reviewedFinal Published versio

    Hydroxychloroquine and chloroquine retinal safety concerns during COVID-19 outbreak

    Get PDF
    Purpose: The current coronavirus disease 2019 (COVID-19) has been declared by the World Health Organization a global pandemic. Chloroquine (CQ) and hydroxychloroquine (HCQ) have been largely adopted in the clinical setting for the management of SARS-CoV-2 infection; however, their known retinal toxicity has raised some safety concerns, especially considering the higher-dosage employed for COVID-19 patients as compared with their suggested posology for their usual indications, including systemic lupus erythematosus and other rheumatic diseases. In this review, we will discuss the optimal dosages recommended for COVID-19 patients when treated with HCQ and CQ. Methods: A comprehensive literature search was performed in PubMed, Cochrane library, Embase and Scopus, by using the following search terms: "chloroquine retinal toxicity" and "hydroxychloroquine retinal toxicity" alone or in combination with "coronavirus", "COVID-19", " SARS-CoV-2 infection " from inception to August 2020. Results: Although there is still no consistent evidence about HCQ/CQ retinal toxicity in patients with COVID-19, these possible drug-related retinal adverse events may represent a major safety concern. For this reason, appropriate screening strategies, including telemedicine, should be developed in the near future. Conclusion: A possible future clinical perspective for patients with COVID-19 treated with HCQ/CQ could reside in the multidisciplinary collaboration between ophthalmologists monitoring the risk of HCQ/CQ-related retinal toxicity and those physicians treating COVID-19 infection

    Smart Devices and Services for Smart City

    Get PDF
    Citizen quality of life can be improved through facilities and services that have been thought to ease citizen interaction with municipal authorities, offices and structures. All technologies and devices, used for developing these facilities, are the pillars of the Smart City idea: a City that adapts itself, at least in part, to citizens’ needs. Advanced Metering Infrastructure (AMI) could become the backbone of all the smart city projects. Other public services can be loaded on AMI’s to be smart and thus helping to find the affordability of investments. The paper deals with this topic by describing devices and results of a pilot project, which has been carried out in an Italian middle city (Salerno), to experience the use of RF 169MHz wM-bus based AMI. Experimental results regarding a set of about 2500 installed devices for gas and water metering, car parking management and elder tele-assistance, will be reported in detail to show convenience and problems of this approach

    Electromechanical actuators affected by multiple failures: Prognostic method based on spectral analysis techniques

    Get PDF
    The proposal of prognostic algorithms able to identify precursors of incipient failures of primary flight command electromechanical actuators (EMA) is beneficial for the anticipation of the incoming failure: an early and correct interpretation of the failure degradation pattern, in fact, can trig an early alert of the maintenance crew, who can properly schedule the servomechanism replacement. An innovative prognostic model-based approach, able to recognize the EMA progressive degradations before his anomalous behaviors become critical, is proposed: the Fault Detection and Identification (FDI) of the considered incipient failures is performed analyzing proper system operational parameters, able to put in evidence the corresponding degradation path, by means of a numerical algorithm based on spectral analysis techniques. Subsequently, these operational parameters will be correlated with the actual EMA health condition by means of failure maps created by a reference monitoring model-based algorithm. In this work, the proposed method has been tested in case of EMA affected by combined progressive failures: in particular, partial stator single phase turn to turn short-circuit and rotor static eccentricity are considered. In order to evaluate the prognostic method, a numerical test-bench has been conceived. Results show that the method exhibit adequate robustness and a high degree of confidence in the ability to early identify an eventual malfunctioning, minimizing the risk of fake alarms or unannounced failures. © 2017 Author(s)

    Yangian Symmetry for the Tree Amplituhedron

    Get PDF
    17 pages, 4 figures; v2: extended discussion of results, minor typos corrected, version published in Journal of Physics ATree-level scattering amplitudes in planar N=4 super Yang-Mills are known to be Yangian-invariant. It has been shown that integrability allows to obtain a general, explicit method to find such invariants. The uplifting of this result to the amplituhedron construction has been an important open problem. In this paper, with the help of methods proper to integrable theories, we successfully fill this gap and clarify the meaning of Yangian invariance for the tree-level amplituhedron. In particular, we construct amplituhedron volume forms from an underlying spin chain. As a by-product of this construction, we also propose a novel on-shell diagrammatics for the amplituhedron.Peer reviewe