31,463 research outputs found

    The tailless Ortholog nhr-67 Regulates Patterning of Gene Expression and Morphogenesis in the C. elegans Vulva

    Get PDF
    Regulation of spatio-temporal gene expression in diverse cell and tissue types is a critical aspect of development. Progression through Caenorhabditis elegans vulval development leads to the generation of seven distinct vulval cell types (vulA, vulB1, vulB2, vulC, vulD, vulE, and vulF), each with its own unique gene expression profile. The mechanisms that establish the precise spatial patterning of these mature cell types are largely unknown. Dissection of the gene regulatory networks involved in vulval patterning and differentiation would help us understand how cells generate a spatially defined pattern of cell fates during organogenesis. We disrupted the activity of 508 transcription factors via RNAi and assayed the expression of ceh-2, a marker for vulB fate during the L4 stage. From this screen, we identified the tailless ortholog nhr-67 as a novel regulator of gene expression in multiple vulval cell types. We find that one way in which nhr-67 maintains cell identity is by restricting inappropriate cell fusion events in specific vulval cells, namely vulE and vulF. nhr-67 exhibits a dynamic expression pattern in the vulval cells and interacts with three other transcriptional regulators cog-1 (Nkx6.1/6.2), lin-11 (LIM), and egl-38 (Pax2/5/8) to generate the composite expression patterns of their downstream targets. We provide evidence that egl-38 regulates gene expression in vulB1, vulC, vulD, vulE, as well as vulF cells. We demonstrate that the pairwise interactions between these regulatory genes are complex and vary among the seven cell types. We also discovered a striking regulatory circuit that affects a subset of the vulval lineages: cog-1 and nhr-67 inhibit both one another and themselves. We postulate that the differential levels and combinatorial patterns of lin-11, cog-1, and nhr-67 expression are a part of a regulatory code for the mature vulval cell types

    Letter from the Editors

    Full text link
    The Gettysburg Historical Journal embodies the History Department’s dedication to diverse learning and excellence in academics. Each year, the Journal publishes the top student work in a range of topics across the spectrum of academic disciplines with different methodological approaches to the study of history. In the words of Marc Bloch, author of The Historian’s Craft, “history is neither watchmaking nor cabinet construction. It is an endeavor toward better understanding.” In the spirit of this maxim, our authors strive to elucidate the many facets of human societies and cultures. Whether these young scholars’ research is focused on politics, religion, economics, environmental history, or women gender and sexuality studies, the editorial staff is consistently proud of the diverse subject matter we select for publication. [excerpt

    Very Singular Similarity Solutions and Hermitian Spectral Theory for Semilinear Odd-Order PDEs

    Full text link
    Very singular self-similar solutions of semilinear odd-order PDEs are studied on the basis of a Hermitian-type spectral theory for linear rescaled odd-order operators.Comment: 49 pages, 12 Figure

    Gap nodes induced by coexistence with antiferromagnetism in iron-based superconductors

    Full text link
    We investigate the pairing in iron pnictides in the coexistence phase, which displays both superconducting and antiferromagnetic orders. By solving the pairing problem on the Fermi surface reconstructed by long-range magnetic order, we find that the pairing interaction necessarily becomes angle-dependent, even if it was isotropic in the paramagnetic phase, which results in an angular variation of the superconducting gap along the Fermi surfaces. We find that the gap has no nodes for a small antiferromagnetic order parameter M, but may develop accidental nodes for intermediate values of M, when one pair of the reconstructed Fermi surface pockets disappear. For even larger M, when the other pair of reconstructed Fermi pockets is gapped by long-range magnetic order, superconductivity still exists, but the quasiparticle spectrum becomes nodeless again. We also show that the application of an external magnetic field facilitates the formation of nodes. We argue that this mechanism for a nodeless-nodal-nodeless transition explains recent thermal conductivity measurements of hole-doped Ba_{1-x}K_xFe_2As_2. [J-Ph. Read et.al. arXiv:1105.2232].Comment: 13 pages, 10 figures, submitted to PR

    A distribution model for the aerial application of granular agricultural particles

    Get PDF
    A model is developed to predict the shape of the distribution of granular agricultural particles applied by aircraft. The particle is assumed to have a random size and shape and the model includes the effect of air resistance, distributor geometry and aircraft wake. General requirements for the maintenance of similarity of the distribution for scale model tests are derived and are addressed to the problem of a nongeneral drag law. It is shown that if the mean and variance of the particle diameter and density are scaled according to the scaling laws governing the system, the shape of the distribution will be preserved. Distributions are calculated numerically and show the effect of a random initial lateral position, particle size and drag coefficient. A listing of the computer code is included
    corecore