8 research outputs found

    Singular Orbits and Dynamics at Infinity of a Conjugate Lorenz-Like System

    Get PDF
    A conjugate Lorenz-like system which includes only two quadratic nonlinearities is proposed in this paper. Some basic properties of this system, such as the distribution of its equilibria and their stabilities, the Lyapunov exponents, the bifurcations are investigated by some numerical and theoretical analysis. The forming mechanisms of compound structures of its new chaotic attractors obtained by merging together two simple attractors after performing one mirror operation are also presented. Furthermore, some of its other complex dynamical behaviours, which include the existence of singularly degenerate heteroclinic cycles, the existence of homoclinic and heteroclinic orbits and the dynamics at infinity, etc, are formulated in detail. In the meantime, some problems deserving further investigations are presented

    Bifurcation of Nongeneric Homoclinic Orbit Accompanied by Pitchfork Bifurcation

    No full text
    The bifurcation of a nongeneric homoclinic orbit (i.e., the orbit comes from the equilibrium along the unstable manifold instead of the center manifold) connecting a nonhyperbolic equilibrium is investigated, and the nonhyperbolic equilibrium undergoes a pitchfork bifurcation. The existence (resp., nonexistence) of a homoclinic orbit and an 1-periodic orbit are established when the pitchfork bifurcation does not happen, while as the nonhyperbolic equilibrium undergoes a pitchfork bifurcation, we obtain the sufficient conditions for the existence of homoclinic orbit and two or three heteroclinic orbits, and so forth. Moreover, we explore the difference between the bifurcation of the nongeneric homoclinic orbit and the generic one

    Dynamical Analysis and Simulation of a New Lorenz-Like Chaotic System

    No full text
    This work presents and investigates a new chaotic system with eight terms. By numerical simulation, the two-scroll chaotic attractor is found for some certain parameters. And, by theoretical analysis, we discuss the dynamical behavior of the new-type Lorenz-like chaotic system. Firstly, the local dynamical properties, such as the distribution and the local stability of all equilibrium points, the local stable and unstable manifolds, and the Hopf bifurcations, are all revealed as the parameters varying in the space of parameters. Secondly, by applying the way of Poincaré compactification in ℝ3, the dynamics at infinity are clearly analyzed. Thirdly, combining the dynamics at finity and those at infinity, the global dynamical behaviors are formulated. Especially, we have proved the existence of the infinite heteroclinic orbits. Furthermore, all obtained theoretical results in this paper are further verified by numerical simulations

    The Twisting Bifurcations of Double Homoclinic Loops with Resonant Eigenvalues

    No full text
    The twisting bifurcations of double homoclinic loops with resonant eigenvalues are investigated in four-dimensional systems. The coexistence or noncoexistence of large 1-homoclinic orbit and large 1-periodic orbit near double homoclinic loops is given. The existence or nonexistence of saddle-node bifurcation surfaces is obtained. Finally, the complete bifurcation diagrams and bifurcation curves are also given under different cases. Moreover, the methods adopted in this paper can be extended to a higher dimensional system