40 research outputs found

    Rotor fault classification technique and precision analysis with kernel principal component analysis and multi-support vector machines

    Get PDF
    To solve the diagnosis problem of fault classification for aero-engine vibration over standard during test, a fault diagnosis classification approach based on kernel principal component analysis (KPCA) feature extraction and multi-support vector machines (SVM) is proposed, which extracted the feature of testing cell standard fault samples through exhausting the capability of nonlinear feature extraction of KPCA. By computing inner product kernel functions of original feature space, the vibration signal of rotor is transformed from principal low dimensional feature space to high dimensional feature spaces by this nonlinear map. Then, the nonlinear principal components of original low dimensional space are obtained by performing PCA on the high dimensional feature spaces. During muti-SVM training period, as eigenvectors, the nonlinear principal components are separated into training set and test set, and penalty parameter and kernel function parameter are optimized by adopting genetic optimization algorithm. A high classification accuracy of training set and test set is sustained and over-fitting and under-fitting are avoided. Experiment results indicate that this method has good performance in distinguishing different aero-engine fault mode, and is suitable for fault recognition of a high speed rotor

    KALM: Knowledge-Aware Integration of Local, Document, and Global Contexts for Long Document Understanding

    Full text link
    With the advent of pre-trained language models (LMs), increasing research efforts have been focusing on infusing commonsense and domain-specific knowledge to prepare LMs for downstream tasks. These works attempt to leverage knowledge graphs, the de facto standard of symbolic knowledge representation, along with pre-trained LMs. While existing approaches leverage external knowledge, it remains an open question how to jointly incorporate knowledge graphs representing varying contexts, from local (e.g., sentence), to document-level, to global knowledge, to enable knowledge-rich and interpretable exchange across these contexts. Such rich contextualization can be especially beneficial for long document understanding tasks since standard pre-trained LMs are typically bounded by the input sequence length. In light of these challenges, we propose KALM, a Knowledge-Aware Language Model that jointly leverages knowledge in local, document-level, and global contexts for long document understanding. KALM first encodes long documents and knowledge graphs into the three knowledge-aware context representations. It then processes each context with context-specific layers, followed by a context fusion layer that facilitates interpretable knowledge exchange to derive an overarching document representation. Extensive experiments demonstrate that KALM achieves state-of-the-art performance on three long document understanding tasks across 6 datasets/settings. Further analyses reveal that the three knowledge-aware contexts are complementary and they all contribute to model performance, while the importance and information exchange patterns of different contexts vary with respect to different tasks and datasets

    BotMoE: Twitter Bot Detection with Community-Aware Mixtures of Modal-Specific Experts

    Full text link
    Twitter bot detection has become a crucial task in efforts to combat online misinformation, mitigate election interference, and curb malicious propaganda. However, advanced Twitter bots often attempt to mimic the characteristics of genuine users through feature manipulation and disguise themselves to fit in diverse user communities, posing challenges for existing Twitter bot detection models. To this end, we propose BotMoE, a Twitter bot detection framework that jointly utilizes multiple user information modalities (metadata, textual content, network structure) to improve the detection of deceptive bots. Furthermore, BotMoE incorporates a community-aware Mixture-of-Experts (MoE) layer to improve domain generalization and adapt to different Twitter communities. Specifically, BotMoE constructs modal-specific encoders for metadata features, textual content, and graphical structure, which jointly model Twitter users from three modal-specific perspectives. We then employ a community-aware MoE layer to automatically assign users to different communities and leverage the corresponding expert networks. Finally, user representations from metadata, text, and graph perspectives are fused with an expert fusion layer, combining all three modalities while measuring the consistency of user information. Extensive experiments demonstrate that BotMoE significantly advances the state-of-the-art on three Twitter bot detection benchmarks. Studies also confirm that BotMoE captures advanced and evasive bots, alleviates the reliance on training data, and better generalizes to new and previously unseen user communities.Comment: Accepted at SIGIR 202

    KCD: Knowledge Walks and Textual Cues Enhanced Political Perspective Detection in News Media

    Full text link
    Political perspective detection has become an increasingly important task that can help combat echo chambers and political polarization. Previous approaches generally focus on leveraging textual content to identify stances, while they fail to reason with background knowledge or leverage the rich semantic and syntactic textual labels in news articles. In light of these limitations, we propose KCD, a political perspective detection approach to enable multi-hop knowledge reasoning and incorporate textual cues as paragraph-level labels. Specifically, we firstly generate random walks on external knowledge graphs and infuse them with news text representations. We then construct a heterogeneous information network to jointly model news content as well as semantic, syntactic and entity cues in news articles. Finally, we adopt relational graph neural networks for graph-level representation learning and conduct political perspective detection. Extensive experiments demonstrate that our approach outperforms state-of-the-art methods on two benchmark datasets. We further examine the effect of knowledge walks and textual cues and how they contribute to our approach's data efficiency.Comment: accepted at NAACL 2022 main conferenc

    BotPercent: Estimating Bot Populations in Twitter Communities

    Full text link
    Twitter bot detection is vital in combating misinformation and safeguarding the integrity of social media discourse. While malicious bots are becoming more and more sophisticated and personalized, standard bot detection approaches are still agnostic to social environments (henceforth, communities) the bots operate at. In this work, we introduce community-specific bot detection, estimating the percentage of bots given the context of a community. Our method -- BotPercent -- is an amalgamation of Twitter bot detection datasets and feature-, text-, and graph-based models, adjusted to a particular community on Twitter. We introduce an approach that performs confidence calibration across bot detection models, which addresses generalization issues in existing community-agnostic models targeting individual bots and leads to more accurate community-level bot estimations. Experiments demonstrate that BotPercent achieves state-of-the-art performance in community-level Twitter bot detection across both balanced and imbalanced class distribution settings, %outperforming existing approaches and presenting a less biased estimator of Twitter bot populations within the communities we analyze. We then analyze bot rates in several Twitter groups, including users who engage with partisan news media, political communities in different countries, and more. Our results reveal that the presence of Twitter bots is not homogeneous, but exhibiting a spatial-temporal distribution with considerable heterogeneity that should be taken into account for content moderation and social media policy making. The implementation of BotPercent is available at https://github.com/TamSiuhin/BotPercent.Comment: Accepted to findings of EMNLP 202

    Detecting Spoilers in Movie Reviews with External Movie Knowledge and User Networks

    Full text link
    Online movie review platforms are providing crowdsourced feedback for the film industry and the general public, while spoiler reviews greatly compromise user experience. Although preliminary research efforts were made to automatically identify spoilers, they merely focus on the review content itself, while robust spoiler detection requires putting the review into the context of facts and knowledge regarding movies, user behavior on film review platforms, and more. In light of these challenges, we first curate a large-scale network-based spoiler detection dataset LCS and a comprehensive and up-to-date movie knowledge base UKM. We then propose MVSD, a novel Multi-View Spoiler Detection framework that takes into account the external knowledge about movies and user activities on movie review platforms. Specifically, MVSD constructs three interconnecting heterogeneous information networks to model diverse data sources and their multi-view attributes, while we design and employ a novel heterogeneous graph neural network architecture for spoiler detection as node-level classification. Extensive experiments demonstrate that MVSD advances the state-of-the-art on two spoiler detection datasets, while the introduction of external knowledge and user interactions help ground robust spoiler detection. Our data and code are available at https://github.com/Arthur-Heng/Spoiler-DetectionComment: EMNLP 202

    KGQuiz: Evaluating the Generalization of Encoded Knowledge in Large Language Models

    Full text link
    Large language models (LLMs) demonstrate remarkable performance on knowledge-intensive tasks, suggesting that real-world knowledge is encoded in their model parameters. However, besides explorations on a few probing tasks in limited knowledge domains, it is not well understood how to evaluate LLMs' knowledge systematically and how well their knowledge abilities generalize, across a spectrum of knowledge domains and progressively complex task formats. To this end, we propose KGQuiz, a knowledge-intensive benchmark to comprehensively investigate the knowledge generalization abilities of LLMs. KGQuiz is a scalable framework constructed from triplet-based knowledge, which covers three knowledge domains and consists of five tasks with increasing complexity: true-or-false, multiple-choice QA, blank filling, factual editing, and open-ended knowledge generation. To gain a better understanding of LLMs' knowledge abilities and their generalization, we evaluate 10 open-source and black-box LLMs on the KGQuiz benchmark across the five knowledge-intensive tasks and knowledge domains. Extensive experiments demonstrate that LLMs achieve impressive performance in straightforward knowledge QA tasks, while settings and contexts requiring more complex reasoning or employing domain-specific facts still present significant challenges. We envision KGQuiz as a testbed to analyze such nuanced variations in performance across domains and task formats, and ultimately to understand, evaluate, and improve LLMs' knowledge abilities across a wide spectrum of knowledge domains and tasks
    corecore