18 research outputs found

    Computing analytic Bayes factors from summary statistics in repeated-measures designs

    Full text link
    Bayes factors are an increasingly popular tool for indexing evidence from experiments. For two competing population models, the Bayes factor reflects the relative likelihood of observing some data under one model compared to the other. In general, computing a Bayes factor is difficult, because computing the marginal likelihood of each model requires integrating the product of the likelihood and a prior distribution on the population parameter(s). In this paper, we develop a new analytic formula for computing Bayes factors directly from minimal summary statistics in repeated-measures designs. This work is an improvement on previous methods for computing Bayes factors from summary statistics (e.g., the BIC method), which produce Bayes factors that violate the Sellke upper bound of evidence for smaller sample sizes. The new approach taken in this paper extends requires knowing only the FF-statistic and degrees of freedom, both of which are commonly reported in most empirical work. In addition to providing computational examples, we report a simulation study that benchmarks the new formula against other methods for computing Bayes factors in repeated-measures designs. Our new method provides an easy way for researchers to compute Bayes factors directly from a minimal set of summary statistics, allowing users to index the evidential value of their own data, as well as data reported in published studies

    Estimating Bayes factors from minimal ANOVA summaries for repeated-measures designs

    Full text link
    In this paper, I develop a formula for estimating Bayes factors directly from minimal summary statistics produced in repeated measures analysis of variance designs. The formula, which requires knowing only the FF-statistic, the number of subjects, and the number of repeated measurements per subject, is based on the BIC approximation of the Bayes factor, a common default method for Bayesian computation with linear models. In addition to providing computational examples, I report a simulation study in which I demonstrate that the formula compares favorably to a recently developed, more complex method that accounts for correlation between repeated measurements. The minimal BIC method provides a simple way for researchers to estimate Bayes factors from a minimal set of summary statistics, giving users a powerful index for estimating the evidential value of not only their own data, but also the data reported in published studies

    A Single-Boundary Accumulator Model of Response Times in an Addition Verification Task

    No full text
    Current theories of mathematical cognition offer competing accounts of the interplay between encoding and calculation in mental arithmetic. Additive models propose that manipulations of problem format do not interact with the cognitive processes used in calculation. Alternatively, interactive models suppose that format manipulations have a direct effect on calculation processes. In the present study, we tested these competing models by fitting participants' RT distributions in an arithmetic verification task with a single-boundary accumulator model (the shifted Wald distribution). We found that in addition to providing a more complete description of RT distributions, the accumulator model afforded a potentially more sensitive test of format effects. Specifically, we found that format affected drift rate, which implies that problem format has a direct impact on calculation processes. These data give further support for an interactive model of mental arithmetic

    Bayesian Inference in Numerical Cognition: A Tutorial Using JASP

    Get PDF
    Researchers in numerical cognition rely on hypothesis testing and parameter estimation to evaluate the evidential value of data. Though there has been increased interest in Bayesian statistics as an alternative to the classical, frequentist approach to hypothesis testing, many researchers remain hesitant to change their methods of inference. In this tutorial, we provide a concise introduction to Bayesian hypothesis testing and parameter estimation in the context of numerical cognition. Here, we focus on three examples of Bayesian inference: the t-test, linear regression, and analysis of variance. Using the free software package JASP, we provide the reader with a basic understanding of how Bayesian inference works “under the hood” as well as instructions detailing how to perform and interpret each Bayesian analysis

    Tracking the Continuous Dynamics of Numerical Processing: A Brief Review and Editorial

    Get PDF
    Many recent studies in numerical cognition have moved beyond the use of purely chronometric techniques in favor of methods which track the continuous dynamics of numerical processing. Two examples of such techniques include eye tracking and hand tracking (or computer mouse tracking). To reflect this increased concentration on continuous methods, we have collected a group of 5 articles that utilize these techniques to answer some contemporary questions in numerical cognition. In this editorial, we discuss the two paradigms and provide a brief review of some of the work in numerical cognition that has profited from the use of these techniques. For both methods, we discuss the past research through the frameworks of single digit number processing, multidigit number processing, and mental arithmetic processing. We conclude with a discussion of the papers that have been contributed to this special section and point to some possible future directions for researchers interested in tracking the continuous dynamics of numerical processing