463 research outputs found

    Universality of citation distributions: towards an objective measure of scientific impact

    Full text link
    We study the distributions of citations received by a single publication within several disciplines, spanning broad areas of science. We show that the probability that an article is cited cc times has large variations between different disciplines, but all distributions are rescaled on a universal curve when the relative indicator cf=c/c0c_f=c/c_0 is considered, where c0c_0 is the average number of citations per article for the discipline. In addition we show that the same universal behavior occurs when citation distributions of articles published in the same field, but in different years, are compared. These findings provide a strong validation of cfc_f as an unbiased indicator for citation performance across disciplines and years. Based on this indicator, we introduce a generalization of the h-index suitable for comparing scientists working in different fields.Comment: 7 pages, 5 figures. accepted for publication in Proc. Natl Acad. Sci. US

    Redundant Interdependencies Boost the Robustness of Multiplex Networks

    Get PDF
    12 pages, 10 figures + Supp MatF. R. acknowledges support from the National Science Foundation (Grant No. CMMI-1552487) and the U.S. Army Research Office (Grant No. W911NF-16-1-0104)

    Epidemic plateau in critical susceptible-infected-removed dynamics with nontrivial initial conditions

    Get PDF
    (11 pages, 10 figures)Containment measures implemented by some countries to suppress the spread of COVID-19 have resulted in a slowdown of the epidemic characterized by time series of daily infections plateauing over extended periods of time. We prove that such a dynamical pattern is compatible with critical Susceptible-Infected-Removed (SIR) dynamics. In traditional analyses of the critical SIR model, the critical dynamical regime is started from a single infected node. The application of containment measures to an ongoing epidemic, however, has the effect to make the system enter in its critical regime with a number of infected individuals potentially large. We describe how such non-trivial starting conditions affect the critical behavior of the SIR model. We perform a theoretical and large-scale numerical investigation of the model. We show that the expected outbreak size is an increasing function of the initial number of infected individuals, while the expected duration of the outbreak is a non-monotonic function of the initial number of infected individuals. Also, we precisely characterize the magnitude of the fluctuations associated with the size and duration of the outbreak in critical SIR dynamics with non-trivial initial conditions. Far from heard immunity, fluctuations are much larger than average values, thus indicating that predictions of plateauing time series may be particularly challenging

    A paradox in community detection

    Full text link
    Recent research has shown that virtually all algorithms aimed at the identification of communities in networks are affected by the same main limitation: the impossibility to detect communities, even when these are well-defined, if the average value of the difference between internal and external node degrees does not exceed a strictly positive value, in literature known as detectability threshold. Here, we counterintuitively show that the value of this threshold is inversely proportional to the intrinsic quality of communities: the detection of well-defined modules is thus more difficult than the identification of ill-defined communities.Comment: 5 pages, 3 figure

    An Introduction to Community Detection in Multi-layered Social Network

    Full text link
    Social communities extraction and their dynamics are one of the most important problems in today's social network analysis. During last few years, many researchers have proposed their own methods for group discovery in social networks. However, almost none of them have noticed that modern social networks are much more complex than few years ago. Due to vast amount of different data about various user activities available in IT systems, it is possible to distinguish the new class of social networks called multi-layered social network. For that reason, the new approach to community detection in the multi-layered social network, which utilizes multi-layered edge clustering coefficient is proposed in the paper.Comment: M.D. Lytras et al. (Eds.): WSKS 2011, CCIS 278, pp. 185-190, 201

    Message-Passing Methods for Complex Contagions

    Full text link
    Message-passing methods provide a powerful approach for calculating the expected size of cascades either on random networks (e.g., drawn from a configuration-model ensemble or its generalizations) asymptotically as the number NN of nodes becomes infinite or on specific finite-size networks. We review the message-passing approach and show how to derive it for configuration-model networks using the methods of (Dhar et al., 1997) and (Gleeson, 2008). Using this approach, we explain for such networks how to determine an analytical expression for a "cascade condition", which determines whether a global cascade will occur. We extend this approach to the message-passing methods for specific finite-size networks (Shrestha and Moore, 2014; Lokhov et al., 2015), and we derive a generalized cascade condition. Throughout this chapter, we illustrate these ideas using the Watts threshold model.Comment: 14 pages, 3 figure

    Who is the best player ever? A complex network analysis of the history of professional tennis

    Get PDF
    We consider all matches played by professional tennis players between 1968 and 2010, and, on the basis of this data set, construct a directed and weighted network of contacts. The resulting graph shows complex features, typical of many real networked systems studied in literature. We develop a diffusion algorithm and apply it to the tennis contact network in order to rank professional players. Jimmy Connors is identified as the best player of the history of tennis according to our ranking procedure. We perform a complete analysis by determining the best players on specific playing surfaces as well as the best ones in each of the years covered by the data set. The results of our technique are compared to those of two other well established methods. In general, we observe that our ranking method performs better: it has a higher predictive power and does not require the arbitrary introduction of external criteria for the correct assessment of the quality of players. The present work provides a novel evidence of the utility of tools and methods of network theory in real applications.Comment: 10 pages, 4 figures, 4 table

    Defining and identifying communities in networks

    Full text link
    The investigation of community structures in networks is an important issue in many domains and disciplines. This problem is relevant for social tasks (objective analysis of relationships on the web), biological inquiries (functional studies in metabolic, cellular or protein networks) or technological problems (optimization of large infrastructures). Several types of algorithm exist for revealing the community structure in networks, but a general and quantitative definition of community is still lacking, leading to an intrinsic difficulty in the interpretation of the results of the algorithms without any additional non-topological information. In this paper we face this problem by introducing two quantitative definitions of community and by showing how they are implemented in practice in the existing algorithms. In this way the algorithms for the identification of the community structure become fully self-contained. Furthermore, we propose a new local algorithm to detect communities which outperforms the existing algorithms with respect to the computational cost, keeping the same level of reliability. The new algorithm is tested on artificial and real-world graphs. In particular we show the application of the new algorithm to a network of scientific collaborations, which, for its size, can not be attacked with the usual methods. This new class of local algorithms could open the way to applications to large-scale technological and biological applications.Comment: Revtex, final form, 14 pages, 6 figure

    Explosive Percolation in the Human Protein Homology Network

    Full text link
    We study the explosive character of the percolation transition in a real-world network. We show that the emergence of a spanning cluster in the Human Protein Homology Network (H-PHN) exhibits similar features to an Achlioptas-type process and is markedly different from regular random percolation. The underlying mechanism of this transition can be described by slow-growing clusters that remain isolated until the later stages of the process, when the addition of a small number of links leads to the rapid interconnection of these modules into a giant cluster. Our results indicate that the evolutionary-based process that shapes the topology of the H-PHN through duplication-divergence events may occur in sudden steps, similarly to what is seen in first-order phase transitions.Comment: 13 pages, 6 figure

    A reverse engineering approach to the suppression of citation biases reveals universal properties of citation distributions

    Get PDF
    The large amount of information contained in bibliographic databases has recently boosted the use of citations, and other indicators based on citation numbers, as tools for the quantitative assessment of scientific research. Citations counts are often interpreted as proxies for the scientific influence of papers, journals, scholars, and institutions. However, a rigorous and scientifically grounded methodology for a correct use of citation counts is still missing. In particular, cross-disciplinary comparisons in terms of raw citation counts systematically favors scientific disciplines with higher citation and publication rates. Here we perform an exhaustive study of the citation patterns of millions of papers, and derive a simple transformation of citation counts able to suppress the disproportionate citation counts among scientific domains. We find that the transformation is well described by a power-law function, and that the parameter values of the transformation are typical features of each scientific discipline. Universal properties of citation patterns descend therefore from the fact that citation distributions for papers in a specific field are all part of the same family of univariate distributions.Comment: 9 pages, 6 figures. Supporting information files available at http://filrad.homelinux.or
    corecore