7 research outputs found

    Tiger nut (Cyperus esculentus): Nutrient profiling using HPLC and UV-spectroscopic techniques.

    Get PDF
    Food insecurity and undernourishment constitute a major challenge in Africa and the world at large. To meet key nutritional targets and tackle the menace of undernourishment, we need to exploit available but underutilised food crops. A common underutilised food crop with the potential to improve daily nutrition is tiger nut. This potential is evidenced in the number of essential amino acids detected, which constitute 74.425% of the entire amino acids detected, in addition to important minerals and vitamins. The nutritional composition of the yellow variety of tiger nut (Cyperus esculentus) was determined using the standard methods of high-performance liquid chromatography and UV-spectroscopy. Ten amino acids were identified and quantified, including six essential amino acids, of which valine had the highest concentration (67.59 μg/100 g), followed by leucine (3.019 μg/100 g), phenylalanine (1.767 μg/100 g), lysine (0.946 μg/100 g), histidine (1.048 μg/100 g) and tryptophan (0.055 μg/100 g). The other amino acids were proline (24.124 μg/100 g), cysteine (1.269 μg/100 g), glycine (0.024 μg/100 g), and glutamine (0.022 μg/100 g). Monosaccharides detected were ribose (41.76%), glucose (21.52%), sedoheptulose (17.94%), fructose (4.566%), rhamnose (1.78%) and mannose (1.58%), whilst disaccharides detected were sucrose (87.66%) and maltose (11.39%). Mineral concentrations were K 144.80 ± 1.10 mg/100 g, Ca 94.39 ± 0.02 mg/100 g, Na 83.92 ± 0.04 mg/100 g, Fe 19.36 ± 0.54 mg/100 g, Mg 17.63±0.13 mg/100 g, Cu 13.28±0.05 mg/100 g and Zn 5.18±0.01 mg/100 g Vitamins A, B2, C and E were detected and quantified as 53.93±1.03, 7.61±1.20, 31.70±1.25 and 128.75±0.74 μg/100 g, respectively. The chemical and nutritional properties of the yellow variety of tiger nut suggest that it is rich in essential amino acids, minerals, and some vitamins. Hence, it should be recommended to persons with nutritional deficiencies as it is cheap and available all year round. Significance:• The nutritional composition of the yellow tiger nut will assist in meeting the recommended daily intake of essential amino acids, monosaccharides,  disaccharides, minerals, and vitamins, thus contributing towards solving the challenge of food insecurity and malnutrition, particularly in the African sub-region.• The rich concentration of these nutrients could be harnessed in the biofortification of food materials known to be deficient in one nutrient or another.• These important attributes of tiger nut, if harnessed, will add value to this underutilised crop and enhance the economic livelihood of the local farmers

    Bioinformatic characterization of a triacylglycerol lipase produced by Aspergillus flavus isolated from the decaying seed of Cucumeropsis mannii

    Get PDF
    Lipases are enzymes of industrial importance responsible for the hydrolysis of ester bonds of triglycerides. A lipolytic fungus was isolated and subsequently identified based on the ITS sequence analysis as putative Aspergillus flavus with accession number LC424503. The gene coding for extracellular triacylglycerol lipase was isolated from Aspergillus flavus species, sequenced, and characterised using bioinformatics tools. An open reading frame of 420 amino acid sequence was obtained and designated as Aspergillus flavus lipase (AFL) sequence. Alignment of the amino acid sequence with other lipases revealed the presence GHSLG sequence which is the lipase consensus sequence Gly-X1-Ser-X2-Gly indicating that it a classical lipase. A catalytic active site lid domain composed of TYITDTIIDLS amino acids sequence was also revealed. This lid protects the active site, control the catalytic activity and substrate selectivity in lipases. The 3-Dimensional structural model shared 34.08% sequence identity with a lipase from Yarrowia lipolytica covering 272 amino acid residues of the template model. A search of the lipase engineering database using AFL sequence revealed that it belongs to the class GX-lipase, superfamily abH23 and homologous family abH23.02, molecular weight and isoelectric point values of 46.95 KDa and 5.7, respectively. N-glycosylation sites were predicted at residues 164, 236 and 333, with potentials of 0.7250, 0.7037 and 0.7048, respectively. O-glycosylation sites were predicted at residues 355, 358, 360 and 366. A signal sequence of 37 amino acids was revealed at the N-terminal of the polypeptide. This is a short peptide sequence that marks a protein for transport across the cell membrane and indicates that AFL is an extracellular lipase. The findings on the structural and molecular properties of Aspergillus flavus lipase in this work will be crucial in future studies aiming at engineering the enzyme for biotechnology applications

    Tiger nut (Cyperus esculentus): Nutrient profiling using HPLC and UV-spectroscopic techniques

    Get PDF
    Food insecurity and undernourishment constitute a major challenge in Africa and the world at large. To meet key nutritional targets and tackle the menace of undernourishment, we need to exploit available but underutilised food crops. A common underutilised food crop with the potential to improve daily nutrition is tiger nut. This potential is evidenced in the number of essential amino acids detected, which constitute 74.425% of the entire amino acids detected, in addition to important minerals and vitamins. The nutritional composition of the yellow variety of tiger nut (Cyperus esculentus) was determined using the standard methods of high-performance liquid chromatography and UV-spectroscopy. Ten amino acids were identified and quantified, including six essential amino acids, of which valine had the highest concentration (67.59 μg/100 g), followed by leucine (3.019 μg/100 g), phenylalanine (1.767 μg/100 g), lysine (0.946 μg/100 g), histidine (1.048 μg/100 g) and tryptophan (0.055 μg/100 g). The other amino acids were proline (24.124 μg/100 g), cysteine (1.269 μg/100 g), glycine (0.024 μg/100 g), and glutamine (0.022 μg/100 g). Monosaccharides detected were ribose (41.76%), glucose (21.52%), sedoheptulose (17.94%), fructose (4.566%), rhamnose (1.78%) and mannose (1.58%), whilst disaccharides detected were sucrose (87.66%) and maltose (11.39%). Mineral concentrations were K 144.80 ± 1.10 mg/100 g, Ca 94.39 ± 0.02 mg/100 g, Na 83.92 ± 0.04 mg/100 g, Fe 19.36 ± 0.54 mg/100 g, Mg 17.63±0.13 mg/100 g, Cu 13.28±0.05 mg/100 g and Zn 5.18±0.01 mg/100 g Vitamins A, B2, C and E were detected and quantified as 53.93±1.03, 7.61±1.20, 31.70±1.25 and 128.75±0.74 μg/100 g, respectively. The chemical and nutritional properties of the yellow variety of tiger nut suggest that it is rich in essential amino acids, minerals, and some vitamins. Hence, it should be recommended to persons with nutritional deficiencies as it is cheap and available all year round. Significance: The nutritional composition of the yellow tiger nut will assist in meeting the recommended daily intake of essential amino acids, monosaccharides, disaccharides, minerals, and vitamins, thus contributing towards solving the challenge of food insecurity and malnutrition, particularly in the African sub-region. The rich concentration of these nutrients could be harnessed in the biofortification of food materials known to be deficient in one nutrient or another. These important attributes of tiger nut, if harnessed, will add value to this underutilised crop and enhance the economic livelihood of the local farmers

    Biodiesel potential of Cucumeropsis mannii (white melon) seed oil: A neglected and underutilized resource in Nigeria

    Get PDF
    A major challenge in the biodiesel industry is the availability of high-quality vegetable oil feedstocks. Thus, there is a continuous search for quality biodiesel feedstock whose production will trigger economic impact on the agricultural sector, minimize land degradation and without significant disruption to the food chain. In this work, we extracted and analysed oil from neglected and underutilized Cucumeropsis mannii seeds for their potential in biodiesel production. The oil content of C. mannii seed was 40.8 ± 0.56%. GC-MS analysis of the oil revealed the presence of 47.0% saturated fatty (predominantly palmitic acid, stearic acid) and 53.0% of unsaturated fatty acids (predominantly oleic, linoleic and erucic acids). The physicochemical properties were determined and values were as follows: iodine value (111.07 ± 0.15 g/100 g), saponification value (192.03 ± 0.37 mg/kg of oil), peroxide value (2.60 ± 0.10 meq/kg), acid value (4.20 ± 0.02 mgKOH/g) free fatty acid (2.51 ± 0.02%), relative density (0.93 ± 0.02), the refractive index at 28 °C (1.46 ± 0.04) and viscosity at 30 °C (3.00 ± 0.10 mm2/s). The fuel properties namely, cloud point, pour point, flash point and caloric value were determined and the values were 3.03 ± 0.11 °C, 1.00 ± 0.10 °C, 279.04 ± 0.99 °C and 31.10 ± 0.11 MJ/kg, respectively. In addition, the protein content of the defatted seed was found to be 47.4 ± 0.61 g/100 g. The defatted protein-rich cakes can be upgraded as a food additive; thus the C. mannii seed oil can serve as biodiesel feedstock without altering the food chain. These characteristics demonstrate the potential of C. mannii oil as a high-quality feedstock for biodiesel production. We envisage that its utilization as biodiesel feedstock will improve the market value of these seeds, thus supporting the economic development of local farmers in rural areas

    Isotherm modelling and optimization of oil layer removal from surface water by organic acid activated plantain peels fiber

    No full text
    This research aimed to optimize and model the adsorption process of oil layer removal using activated plantain peels fiber (PPF), a biomass-based material. The adsorbent was activated by thermal and esterification methods using human and environmentally friendly organic acid. Effects of process parameters were examined by one factor at a time (OFAT) batch adsorption studies, revealing optimal conditions for oil removal. Also, RSM, ANN and ANFIS were used to adequately predict the oil removal with correlation coefficient > 0.98. RSM modelling revealed the best conditions as 90 °C, 0.2 mg/l, 1.5 g, 6 and 75 mins, for temperature, oil–water ratio, adsorbent dosage, pH and contact time respectively. Under these simulated conditions, the predicted oil removal was 96.88 %, which was experimentally validated as 97.44 %. Thermodynamic studies revealed the activation energy, change in enthalpy and change in entropy for irreversible pseudo-first order and pseudo-second order model as (15.82, 24.17, −0.614 KJ/mols) and (33.21,40.31, −0.106 KJ/mols) respectively, indicating non-spontaneous process; while modeling studies revealed that the adsorption process was highly matched to Langmuir’s isotherm, with maximum adsorption capacity of 50.34 mg/g. At the end of the overall statistical modelling, ANFIS performed marginally better than the ANN and RSM. It can be concluded from these results that our biomass-based material is an efficient, economically viable and sustainable adsorbent for oil removal, and has potentials for commercialization since the process of adsorption highly matched with standard models, and its capacity or percentage oil removal also compares favorably to that of commercially available adsorbents

    Quantification of Heavy Metals and Pesticide Residues in Widely Consumed Nigerian Food Crops Using Atomic Absorption Spectroscopy (AAS) and Gas Chromatography (GC)

    No full text
    More still needs to be learned regards the relative contamination of heavy metals and pesticide residues, particularly those found in widely consumed Nigerian food crops like cereals, vegetables, and tubers. In this current study, the heavy metals and pesticide residues detectable in widely consumed Nigerian food crops were respectively quantified using atomic absorption spectroscopy (AAS) and gas chromatography (GC). Specifically, the widely consumed Nigerian food crops included cereals (rice, millet, and maize), legume (soybean), tubers (yam and cassava), as well as leaf (fluted pumpkin, Amaranthus leaf, waterleaf, and scent leaf) and fruit vegetables (okro, cucumber, carrot, and watermelon). Results showed that the detected heavy metals included arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), iron (Fe), lead (Pb), manganese (Mn), mercury (Hg), and nickel (Ni), whereas the pesticide residues included Aldrin, Carbofuran, g-chlordane, Chlorpyrifos, DichloroBiphenyl, Dichlorodiphenyldichloroethane (DDD), Dichlorodiphenyltrichloroethane (DDT), Dichlorvos, Endosulfan, Heptachlor, Hexachlorobenzene (HCB), Isopropylamine, Lindane, t-nonachlor, and Profenofos. Across the studied food crops, the concentrations of heavy metals and pesticides were varied, with different trends as they largely fell below the established maximum permissible limits, and with some exceptions. Our findings suggest there could be a somewhat gradual decline in the concentration of the heavy metals and pesticide residues of these studied food crops when compared to previously published reports specific to Nigeria. To help substantiate this observation and supplement existing information, further investigations are required into the concentration of these heavy metals and pesticide residues specific to these studied food crops at other parts of the country
    corecore