12 research outputs found

    The impact of postdepositional alteration on iron- and molybdenum-based redox proxies

    Get PDF
    Ratios of (un)reactive iron species, authigenic molybdenum contents (Moauth), and molybdenum isotope compositions (δ98Moauth) in sedimentary rocks are geochemical proxies that are widely used to reconstruct past marine redox states, which have been calibrated in modern marine settings covering oxic to euxinic conditions. However, syn- and postdepositional processes can result in alterations and ambiguities of proxy-derived redox signals that can challenge the validity of paleoreconstructions. We present new data from modern organic-rich sediments of two oxygen minimum zone settings in the Gulf of California and the Peruvian margin. The results show that Mo is fully immobilized shortly after deposition by reaction with hydrogen sulfide (H2S) produced during organoclastic sulfate reduction. Thus, any H2S produced deeper in the sediment (e.g., by sulfate reduction coupled to anaerobic methane oxidation) leaves the initially deposited Mo concentrations and δ98Mo signatures unaltered, which supports the robustness of Mo-based redox proxies. In contrast, the Fe speciation data reveal continued pyritization due to constant exposure of Fe minerals to H2S. Importantly, both Fe bound to oxides and carbonates (highly reactive Fe) and also poorly reactive Fe (e.g., sheet silicates) undergo pyritization during early diagenesis. This process generates Fe-based proxy signatures that falsely imply ferruginous or euxinic conditions

    Depth-dependent δ13 C trends in platform and slope settings of the Campbellrand-Malmani carbonate platform and possible implications for Early Earth oxygenation

    Get PDF
    Highlights • Carbon cycle of Neoarchean carbonate platform and potential oxygen oasis. • Carbon isotopes reveal a shift to aerobic biosphere and increasing oxidation state. • Rare earth element patterns reveal decrease in open ocean water influx. • Rimmed margin architecture was crucial for evolution of aerobic ecosystems. Abstract The evolution of oxygenic photosynthesis is widely seen as the major biological factor for the profound shift from reducing to slightly oxidizing conditions in Earth’s atmosphere during the Archean-Proterozoic transition period. The delay from the first biogenic production of oxygen and the permanent oxidation of Earth’s atmosphere during the early Paleoproteorozoic Great Oxidation Event (GOE) indicates that significant environmental modifications were necessary for an effective accumulation of metabolically produced oxygen. Here we report a distinct temporal shift to heavier carbon isotope signatures in lagoonal and intertidal carbonates (δ13Ccarb from -1.6 to +0.2 ‰, relative to VPDB) and organic matter (δ13Corg from about -40 to -25 ‰, relative to VPDB) from the 2.58–2.50 Gy old shallow–marine Campbellrand-Malmani carbonate platform (South Africa). This indicates an increase in the burial rate of organic matter caused by enhanced primary production as well as a change from an anaerobic to an aerobic ecosystem. Trace element data indicate limited influx of reducing species from deep open ocean water into the platform and an increased supply of nutrients from the continent, both supporting primary production and an increasing oxidation state of the platform interior. These restricted conditions allowed that the dissolved inorganic carbon (DIC) pool in the platform interior developed differently than the open ocean. This is supported by coeval carbonates from the marginal slope setting, which had a higher interaction with open ocean water and do not record a comparable shift in δ13Ccarb throughout the sequence. We propose that the emergence of stable shallow-water carbonate platforms in the Neoarchean provided ideal conditions for the evolution of early aerobic ecosystems, which finally led to the full oxidation of Earth’s atmosphere during the GOE

    Pervasively anoxic surface conditions at the onset of the Great Oxidation Event: new multi-proxy constraints from the Cooper Lake paleosol

    Get PDF
    Oceanic element inventories derived from marine sedimentary rocks place important constraints on oxidative continental weathering in deep time, but there remains a scarcity in complementary observations directly from continental sedimentary reservoirs. This study focuses on better defining continental weathering conditions near the Archean-Proterozoic boundary through the multi-proxy (major and ultra-trace element, Fe and Cr stable isotopes, μ-XRF elemental mapping, and detrital zircon U-Pb geochronology) investigation of the ca. 2.45 billion year old (giga annum, Ga) Cooper Lake paleosol (saprolith), developed on a sediment-hosted mafic dike within the Huronian Supergroup (Ontario, Canada). Throughout the variably altered Cooper Lake saprolith, ratios of immobile elements (Nb, Ta, Zr, Hf, Th, Al, Ti) are constant, indicating a uniform pre-alteration dike composition, lack of extreme pH weathering conditions, and no major influence from ligand-rich fluids during weathering or burial metasomatism/metamorphism. The loss of Mg, Fe, Na, Sr, and Li, a signature of albite and ferromagnesian silicate weathering, increases towards the top of the preserved profile (unconformity) and dike margins. Coupled bulk rock behaviour of Fe-Mg-Mn and co-localization of Fe- Mn in clay minerals (predominantly chlorite) indicates these elements were solubilized primarily in their divalent state without Fe/Mn-oxide formation. A lack of a Ce anomaly and immobility of Mo, V, and Cr further support pervasively anoxic weathering conditions. Subtle U enrichment is the only geochemical evidence, if primary, that could be consistent with oxidative element mobilization. The leaching of ferromagnesian silicates was accompanied by variable mobility and depletion of transition metals with a relative depletion order of Fe≈Mg≈Zn\u3eNi\u3eCo\u3eCu (Cu being significantly influenced by secondary sulfide formation). Mild enrichment of heavy Fe isotopes (δ56/54Fe from 0.169 to 0.492 ‰) correlating with Fe depletion in the saprolith indicates loss of isotopically light aqueous Fe(II). Minor REE+Y fractionation with increasing alteration intensity, including a decreasing Eu anomaly and Y/Ho ratio, is attributed to albite breakdown and preferential scavenging of HREE\u3eY by clay minerals, respectively. Younger metasomatism resulted in the addition of several elements (K, Rb, Cs, Be, Tl, Ba, Sn, In, W), partly or wholly obscuring their earlier paleo-weathering trends. The behavior of Cr at Cooper Lake can help test previous hypotheses of an enhanced, low pH-driven continental weathering flux of Cr(III) to marine reservoirs between ca. 2.48-2.32 Ga and the utility of the stable Cr isotope proxy of Mn-oxide induced Cr(III) oxidation. Synchrotron μ- XRF maps and invariant Cr/Nb ratios reveal complete immobility of Cr despite its distribution amongst both clay-rich groundmass and Fe-Ti oxides. Assuming a pH-dependent, continental source of Cr(III) to marine basins, the Cr immobility at Cooper Lake indicates either that signatures of acidic surface waters were localized to uppermost and typically unpreserved regolith horizons or were geographically restricted to acid-generating point sources. However, in given detrital pyrite preservation in fluvial sequences overlying the paleosol, we propose that the oxidative sulphide corrosion required to drive surface pH(δ53/52Cr: -0.321 ± 0.038 ‰, 2sd, n=34) that cannot be linked to Cr(III) oxidation and is instead interpreted to have a magmatic origin. The combined chemical signatures and continued preservation of detrital pyrite/uraninite indicate low atmospheric O2 during weathering at ca. 2.45 Ga preserved in the rift-related sedimentary rocks of the Lower Huronian. The aqueous flux from the reduced weathering of mafic rocks was characterized by a greater abundance of transition metals (Fe, Mn, Zn, Co, Ni) with isotopically light Fe(II), as well as higher Eu/Eu* and Y/Ho. In most models of Precambrian ocean element inventories, hydrothermal fluids are viewed as the main supplier of several metals (e.g., Fe, Zn), although the results herein suggest that a riverine metal supply may have been substantial and that using Eu-excess as a strict proxy for hydrothermal flux may be misleading in near-shore marine sedimentary environments

    Oxygen in the Tropical Pacific POSTRE II First Tracer Survey, Cruise No. M135, March 01 - April 08, 2017, Valparaiso (Chile) - Callao (Peru) POSTRE-III

    Get PDF
    Cruise M135 was a contribution to the DFG Collaborative Research Project (SFB) 754: “Climate-Biogeochemistry Interactions in the Tropical Ocean” with the main goal to better understand the the role of diffusive and advective pathways connecting water within the bottom boundary layer (i.e. the water directly affected by sediment processes) to the pelagic and surface ocean. To achieve this, we have injected a conservative tracer (CF3SF5) within the bottom boundary layer at three different sites along the Peruvian coast at a depth of about 300 m in October 2015 that was mapped during M135. Tracer sampling was carried out by measuring water samples from the CTD-rosette water bottles. In total 144 CTD casts were carried out. From 132 CTD profiles 2828 samples for CF3CF5 investigations were gained and on most stations the tracer could be found. In addition 48 trace metal CTD’s were recorded and trace metal and chemical samples taken from the rosette bottles. On 166 of the CTD profiles oxygen samples were taken and on 94 CTD profiles nutrient samples were collected. Microstructure measurements were made on 24 stations and 2 gliders were deployed. For geological investigations at 5 locations multicorer and long gravity cores were taken. Continuous underway measurements of CO2,N2O and CO as well as continuous ADCP and thermosalinograph recording was made on 37 days. The cruise M135 was very successful; most systems on METEOR worked well and all planned objectives were reached

    Geochemical stratigraphy, sedimentology, and Mo isotope systematics of the ca. 2.58–2.50 Ga-old Transvaal Supergroup carbonate platform, South Africa

    No full text
    The Neoarchean-Paleoproterozoic Transvaal Supergroup in South Africa contains the well-preserved stromatolitic Campbellrand-Malmani carbonate platform, which was deposited in shallow seawater shortly before the 2.40–2.32 Ga Great Oxidation Event (GOE). This platform is composed of alternating stromatolitic carbonates and mudstones and is a prominent candidate for (isotope-) geochemical mapping to investigate the appearance of very small amounts of free oxygen that accumulated in shallow waters preceding the GOE. Mo isotopes in sedimentary archives are widely used as a proxy for redox-changes in modern and ancient environments and recent evidence suggests that oxy-molybdate (MoO42−) is directly transferred from ocean water to inorganic carbonates with negligible fractionation, thus reflecting oceanic Mo isotope signatures. In this study we analyzed major and trace element compositions as well as Mo isotopic compositions of carbonate and mudstone samples from the KMF-5 drill core. Geochemical indicators, such as Fe and Mn concentrations and Fe-to-Mn abundance ratios reveal the preservation of some geochemical indicators despite the widespread silicification and dolomitization of the platform. Heavy δ30Si values of silicified carbonates between 0.53 and 2.35‰ point to Si precipitation from surface water during early diagenesis rather than to a later hydrothermal overprint. This assessment is supported by the frequent observation of rip-up structures of silica (chert) layers within the entire sedimentary succession. The δ98Mo values of whole rock samples throughout the Malmani-Campbellrand platform range between −0.82 and +1.40‰, similar to values reported for deeper slope carbonates from the Griqualand West area, but variations are independent from lithology or depositional water depth. These large variations in δ98Mo values indicate molybdenum redox cycling and thus the presence of free oxygen in the atmosphere-ocean system at that time, in agreement with earlier Mo isotopic studies on Campbellrand carbonates and shales. A similar range in δ98Mo values for carbonates between +0.40 and +0.87‰, however, was also found on the hand specimen scale, indicating the danger of a sample bias on the Mo isotopic stratigraphy of this carbonate platform. Results of previously unpublished adsorption experiments of Mo on CaCO3 clearly indicate that the Mo inventory of Malmani-Campbellrand carbonates was not only influenced by primary adsorption from seawater, but to a much larger degree by secondary processes during early diagenesis, which also affected the Mo isotopic composition of the samples on a local scale. Our results indicate that Mo concentrations and isotopic compositions in ancient stromatolitic carbonates were subject to redox changes within microbial mats and within the soft sediment during early diagenesis and later lithification, and as such cannot be used to quantitatively reconstruct the amount of free atmospheric oxygen or its fluctuations through Earth's history. Nevertheless, we interpret our heavy Mo isotopic signatures from carbonates as a minimum value for Neoarchean seawater and reinforce the assumption that free atmospheric oxygen built up a heavy oceanic Mo reservoir at that time

    Open ocean vs. continentally-derived iron cycles along the Neoarchean Campbellrand-Malmani Carbonate platform, South Africa

    Get PDF
    The deposition of large amounts of mixed-valence Fe minerals in iron formations during the Archean and Paleoproterozoic indicates that the Fe(II)aq (aqueous) content of coeval anoxic seawater was likely several hundred μM, compared to ca. 1 to 20 nM of the modern oxygenated ocean. It has been suggested that oxygen production along shallow marine continental shelves, which probably started several hundred million years before the rise of atmospheric oxygen, effectively oxidized Fe(II)aq from deeper seawater and removed it as Fe(III)ppt(poorly soluble precipitates). However, the reconstruction of the marine Fe cycle during the Archean is still incomplete, partly because of diagenetic redox processes that challenge the interpretation of Fe concentration and isotope signatures of sedimentary archives. In this study, we present new Fe concentrations and isotope compositions of carbonate and mudrock samples from the Neoarchean Campbellrand-Malmani carbonate platform (CMCP) in South Africa. These samples are from the shelf facies of the CMCP and in combination with previously published data of Czaja and others (2012) from carbonates and mudrocks of the slope facies, we show that different depositional settings and conditions resulted in different data distributions. Coupled δ56Fe values (−3.685 to +0.083 ‰) and iron concentrations (861–27672 μg g−1) of pure carbonates deposited during open marine conditions, can be explained by partial Fe(II) oxidation between ferruginous deeper water and oxygenated shallow water, leaving the residual Fe(II)aq pool isotopically light, although Fe(II) oxidation by anoxygenic phototrophy cannot be ruled out. Pure carbonates deposited in a peritidal setting, with less exposure to open ocean water, show a smaller Fe isotope variability with δ56Fe values of −1.207 to −0.204 permil and Fe concentration range from 388 to 5413 μg g−1, respectively. We propose that the Fe systematics of peritidal carbonates were dominated by early diagenetic Fe cycling between carbonates and adjacent mudrocks. Synchrotron based X-ray adsorption spectroscopy reveals a change in Fe speciation, where Fe(II)-bearing ankerite and Fe-sulfide dominate the carbonates in the lower part of the CMCP, whereas carbonates of the upper part of the CMCP mainly contain Fe(III)-(oxyhydr)oxides. The fact that Fe(III) phases are still preserved argues for a higher oxidation state on the shelf of the upper CMCP. This is likely because of a lower content of reductants in those settings, in particular organic carbon, sulfide species, as well as restricted influx of reducing species from the anoxic open ocean due to the formation of a rimmed margin. Nevertheless, more studies of similar carbonate settings are necessary to verify our model. We propose that unfractionated Fe(II)aq in seawater was about two to three times lower on the shelf (30–310 μM) than along the slope (61–928 μM), which implies that Fe(II)aq was removed from the water column closer to the continent, likely by oxidation and precipitation. Overall, the Fe isotope composition and Fe speciation of CMCP sediments support the presence of molecular oxygen in the shallow-marine system and emphasize the utility of Ca-Mg carbonates as proxies for iron cycling in the aqueous environment.This article is published as Eroglu, Suemeyya, Ronny Schoenberg, Sakura Pascarelli, Nicolas J. Beukes, Ilka C. Kleinhanns, and Elizabeth D. Swanner. "Open ocean vs. continentally-derived iron cycles along the Neoarchean Campbellrand-Malmani Carbonate platform, South Africa." American Journal of Science 318, no. 4 (2018): 367-408. doi: 10.2475/04.2018.01. Posted with permission.</p

    Open ocean vs. continentally-derived iron cycles along the Neoarchean Campbellrand-Malmani Carbonate platform, South Africa

    Get PDF
    The deposition of large amounts of mixed-valence Fe minerals in iron formations during the Archean and Paleoproterozoic indicates that the Fe(II)aq (aqueous) content of coeval anoxic seawater was likely several hundred μM, compared to ca. 1 to 20 nM of the modern oxygenated ocean. It has been suggested that oxygen production along shallow marine continental shelves, which probably started several hundred million years before the rise of atmospheric oxygen, effectively oxidized Fe(II)aq from deeper seawater and removed it as Fe(III)ppt (poorly soluble precipitates). However, the reconstruction of the marine Fe cycle during the Archean is still incomplete, partly because of diagenetic redox processes that challenge the interpretation of Fe concentration and isotope signatures of sedimentary archives. In this study, we present new Fe concentrations and isotope compositions of carbonate and mudrock samples from the Neoarchean Campbellrand-Malmani carbonate platform (CMCP) in South Africa. These samples are from the shelf facies of the CMCP and in combination with previously published data of Czaja and others (2012) from carbonates and mudrocks of the slope facies, we show that different depositional settings and conditions resulted in different data distributions. Coupled δ56Fe values (−3.685 to +0.083 ‰) and iron concentrations (861–27672 μg g−1) of pure carbonates deposited during open marine conditions, can be explained by partial Fe(II) oxidation between ferruginous deeper water and oxygenated shallow water, leaving the residual Fe(II)aq pool isotopically light, although Fe(II) oxidation by anoxygenic phototrophy cannot be ruled out. Pure carbonates deposited in a peritidal setting, with less exposure to open ocean water, show a smaller Fe isotope variability with δ56Fe values of −1.207 to −0.204 permil and Fe concentration range from 388 to 5413 μg g−1, respectively. We propose that the Fe systematics of peritidal carbonates were dominated by early diagenetic Fe cycling between carbonates and adjacent mudrocks. Synchrotron based X-ray adsorption spectroscopy reveals a change in Fe speciation, where Fe(II)-bearing ankerite and Fe-sulfide dominate the carbonates in the lower part of the CMCP, whereas carbonates of the upper part of the CMCP mainly contain Fe(III)-(oxyhydr)oxides. The fact that Fe(III) phases are still preserved argues for a higher oxidation state on the shelf of the upper CMCP. This is likely because of a lower content of reductants in those settings, in particular organic carbon, sulfide species, as well as restricted influx of reducing species from the anoxic open ocean due to the formation of a rimmed margin. Nevertheless, more studies of similar carbonate settings are necessary to verify our model. We propose that unfractionated Fe(II)aq in seawater was about two to three times lower on the shelf (30–310 μM) than along the slope (61–928 μM), which implies that Fe(II)aq was removed from the water column closer to the continent, likely by oxidation and precipitation. Overall, the Fe isotope composition and Fe speciation of CMCP sediments support the presence of molecular oxygen in the shallow-marine system and emphasize the utility of Ca-Mg carbonates as proxies for iron cycling in the aqueous environment

    Pervasively anoxic surface conditions at the onset of the Great Oxidation Event: new multi-proxy constraints from the Cooper Lake paleosol

    Get PDF
    Oceanic element inventories derived from marine sedimentary rocks place important constraints on oxidative continental weathering in deep time, but there remains a scarcity in complementary observations directly from continental sedimentary reservoirs. This study focuses on better defining continental weathering conditions near the Archean-Proterozoic boundary through the multi-proxy (major and ultra-trace element, Fe and Cr stable isotopes, μ-XRF elemental mapping, and detrital zircon U-Pb geochronology) investigation of the ca. 2.45 billion year old (giga annum, Ga) Cooper Lake paleosol (saprolith), developed on a sediment-hosted mafic dike within the Huronian Supergroup (Ontario, Canada). Throughout the variably altered Cooper Lake saprolith, ratios of immobile elements (Nb, Ta, Zr, Hf, Th, Al, Ti) are constant, indicating a uniform pre-alteration dike composition, lack of extreme pH weathering conditions, and no major influence from ligand-rich fluids during weathering or burial metasomatism/metamorphism. The loss of Mg, Fe, Na, Sr, and Li, a signature of albite and ferromagnesian silicate weathering, increases towards the top of the preserved profile (unconformity) and dike margins. Coupled bulk rock behaviour of Fe-Mg-Mn and co-localization of Fe- Mn in clay minerals (predominantly chlorite) indicates these elements were solubilized primarily in their divalent state without Fe/Mn-oxide formation. A lack of a Ce anomaly and immobility of Mo, V, and Cr further support pervasively anoxic weathering conditions. Subtle U enrichment is the only geochemical evidence, if primary, that could be consistent with oxidative element mobilization. The leaching of ferromagnesian silicates was accompanied by variable mobility and depletion of transition metals with a relative depletion order of Fe≈Mg≈Zn>Ni>Co>Cu (Cu being significantly influenced by secondary sulfide formation). Mild enrichment of heavy Fe isotopes (δ56/54Fe from 0.169 to 0.492 ‰) correlating with Fe depletion in the saprolith indicates loss of isotopically light aqueous Fe(II). Minor REE+Y fractionation with increasing alteration intensity, including a decreasing Eu anomaly and Y/Ho ratio, is attributed to albite breakdown and preferential scavenging of HREE>Y by clay minerals, respectively. Younger metasomatism resulted in the addition of several elements (K, Rb, Cs, Be, Tl, Ba, Sn, In, W), partly or wholly obscuring their earlier paleo-weathering trends. The behavior of Cr at Cooper Lake can help test previous hypotheses of an enhanced, low pH-driven continental weathering flux of Cr(III) to marine reservoirs between ca. 2.48-2.32 Ga and the utility of the stable Cr isotope proxy of Mn-oxide induced Cr(III) oxidation. Synchrotron μ- XRF maps and invariant Cr/Nb ratios reveal complete immobility of Cr despite its distribution amongst both clay-rich groundmass and Fe-Ti oxides. Assuming a pH-dependent, continental source of Cr(III) to marine basins, the Cr immobility at Cooper Lake indicates either that signatures of acidic surface waters were localized to uppermost and typically unpreserved regolith horizons or were geographically restricted to acid-generating point sources. However, in given detrital pyrite preservation in fluvial sequences overlying the paleosol, we propose that the oxidative sulphide corrosion required to drive surface pH(δ53/52Cr: -0.321 ± 0.038 ‰, 2sd, n=34) that cannot be linked to Cr(III) oxidation and is instead interpreted to have a magmatic origin. The combined chemical signatures and continued preservation of detrital pyrite/uraninite indicate low atmospheric O2 during weathering at ca. 2.45 Ga preserved in the rift-related sedimentary rocks of the Lower Huronian. The aqueous flux from the reduced weathering of mafic rocks was characterized by a greater abundance of transition metals (Fe, Mn, Zn, Co, Ni) with isotopically light Fe(II), as well as higher Eu/Eu* and Y/Ho. In most models of Precambrian ocean element inventories, hydrothermal fluids are viewed as the main supplier of several metals (e.g., Fe, Zn), although the results herein suggest that a riverine metal supply may have been substantial and that using Eu-excess as a strict proxy for hydrothermal flux may be misleading in near-shore marine sedimentary environments.This is a manuscript of an article published as Babechuk, Michael G., Nadine E. Weimar, Ilka C. Kleinhanns, Suemeyya Eroglu, Elizabeth D. Swanner, Gavin G. Kenny, Balz S. Kamber, and Ronny Schoenberg. "Pervasively anoxic surface conditions at the onset of the Great Oxidation Event: new multi-proxy constraints from the Cooper Lake paleosol." Precambrian Research (2019). doi: 10.1016/j.precamres.2018.12.029. Posted with permission.</p
    corecore