104 research outputs found

    Delay discounting of monetary gains and losses in adolescents with ADHD : contribution of delay aversion to choice

    Get PDF
    Adolescents with attention-deficit/hyperactivity disorder (ADHD) are known to have stronger preferences for smaller immediate rewards over larger delayed rewards in delay discounting tasks than their peers, which has been argued to reflect delay aversion. Here, participants performed a delay discounting task with gains and losses. In this latter condition, participants were asked whether they were willing to wait in order to lose less money. Following the core assumption of the delay aversion model that individuals with ADHD have a general aversion to delay, one would predict adolescents with ADHD to avoid waiting in both conditions. Adolescents (12-17 years) with ADHD (n = 29) and controls (n = 28) made choices between smaller immediate and larger delayed gains, and between larger immediate and smaller delayed losses. All delays (5-25 s) and gains/losses (2-10 cents) were experienced. In addition to an area under the curve approach, a mixed-model analysis was conducted to disentangle the contributions of delay duration and immediate gain/delayed loss amount to choice. The ADHD group chose the immediate option more often than controls in the gain condition, but not in the loss condition. The contribution of delay duration to immediate choices was stronger for the ADHD group than the control group in the gain condition only. In addition, the ADHD group scored higher on self-reported delay aversion, and delay aversion was associated with delay sensitivity in the gain condition, but not in the loss condition. In sum, we found no clear evidence for a general aversion to delay in adolescents with ADHD

    Temporal discounting for self and friends in adolescence:A fMRI study

    Get PDF
    Adolescence is characterized by impulsivity but also by increased importance of friendships. This study took the novel perspective of testing temporal discounting in a fMRI task where choices could affect outcomes for 96 adolescents (aged 10–20-years) themselves and their best friend. Decisions either benefitted themselves (i.e., the Self Immediate – Self Delay’ condition) or their friend (i.e., ‘Friend Immediate – Friend Delay’ condition); or juxtaposed rewards for themselves and their friends (i.e., the ‘Self Immediate – Friend Delay’ or ‘Friend Immediate – Self Delay’ conditions). We observed that younger adolescents were more impulsive; and all participants were more impulsive when this was associated with an immediate benefit for friends. Individual differences analyses revealed increased activity in the subgenual anterior cingulate cortex extending in the ventral striatum for immediate relative to delayed reward choices for self. Temporal choices were associated with activity in the prefrontal cortex, parietal cortex, insula, and ventral striatum, but only activity in the right inferior parietal lobe was associated with age. Finally, temporal delay choices for friends relative to self were associated with increased activity in the temporo-parietal junction and precuneus. Overall, this study shows a unique role of the social context in adolescents’ temporal decision making.</p

    Simulating Z2\mathbb{Z}_2 lattice gauge theory on a quantum computer

    Full text link
    The utility of quantum computers for simulating lattice gauge theories is currently limited by the noisiness of the physical hardware. Various quantum error mitigation strategies exist to reduce the statistical and systematic uncertainties in quantum simulations via improved algorithms and analysis strategies. We perform quantum simulations of 1+1d1+1d Z2\mathbb{Z}_2 gauge theory with matter to study the efficacy and interplay of different error mitigation methods: readout error mitigation, randomized compiling, rescaling, and dynamical decoupling. We compute Minkowski correlation functions in this confining gauge theory and extract the mass of the lightest spin-1 state from fits to their time dependence. Quantum error mitigation extends the range of times over which our correlation function calculations are accurate by a factor of six and is therefore essential for obtaining reliable masses.Comment: 20 Pages, 18 Figure

    Automated Whole Animal Bio-Imaging Assay for Human Cancer Dissemination

    Get PDF
    A quantitative bio-imaging platform is developed for analysis of human cancer dissemination in a short-term vertebrate xenotransplantation assay. Six days after implantation of cancer cells in zebrafish embryos, automated imaging in 96 well plates coupled to image analysis algorithms quantifies spreading throughout the host. Findings in this model correlate with behavior in long-term rodent xenograft models for panels of poorly- versus highly malignant cell lines derived from breast, colorectal, and prostate cancer. In addition, cancer cells with scattered mesenchymal characteristics show higher dissemination capacity than cell types with epithelial appearance. Moreover, RNA interference establishes the metastasis-suppressor role for E-cadherin in this model. This automated quantitative whole animal bio-imaging assay can serve as a first-line in vivo screening step in the anti-cancer drug target discovery pipeline

    Uncovering the Signaling Landscape Controlling Breast Cancer Cell Migration Identifies Novel Metastasis Driver Genes

    Get PDF
    Ttriple-negative breast cancer (TNBC) is an aggressive and highly metastatic breast cancer subtype. Enhanced TNBC cell motility is a prerequisite of TNBC cell dissemination. Here, we apply an imaging-based RNAi phenotypic cell migration screen using two highly motile TNBC cell lines (Hs578T and MDA-MB-231) to provide a repository of signaling determinants that functionally drive TNBC cell motility. We have screened ~4,200 target genes individually and discovered 133 and 113 migratory modulators of Hs578T and MDA-MB-231, respectively, which are linked to signaling networks predictive for breast cancer progression. The splicing factors PRPF4B and BUD31 and the transcription factor BPTF are essential for cancer cell migration, amplified in human primary breast tumors and associated with metastasis-free survival. Depletion of PRPF4B, BUD31 and BPTF causes primarily down regulation of genes involved in focal adhesion and ECM-interaction pathways. PRPF4B is essential for TNBC metastasis formation in vivo, making PRPF4B a candidate for further drug developmen

    IGF1R signaling drives antiestrogen resistance through PAK2/PIX activation in luminal breast cancer

    Get PDF
    Antiestrogen resistance in estrogen receptor positive (ER+) breast cancer is associated with increased expression and activity of insulin-like growth factor 1 receptor (IGF1R). Here, a kinome siRNA screen has identified 10 regulators of IGF1R-mediated antiestrogen with clinical significance. These include the tamoxifen resistance suppressors BMPR1B, CDK10, CDK5, EIF2AK1, and MAP2K5, and the tamoxifen resistance inducers CHEK1, PAK2, RPS6KC1, TTK, and TXK. The p21-activated kinase 2, PAK2, is the strongest resistance inducer. Silencing of the tamoxifen resistance inducing genes, particularly PAK2, attenuates IGF1R-mediated resistance to tamoxifen and fulvestrant. High expression of PAK2 in ER+ metastatic breast cancer patients is correlated with unfavorable outcome after first-line tamoxifen monotherapy. Phospho-proteomics has defined PAK2 and the PAK-interacting exchange factors PIXα/β as downstream targets of IGF1R signaling, which are independent from PI3K/ATK and MAPK/ERK pathways. PAK2 and PIXα/β modulate IGF1R signaling-driven cell scattering. Targeting PIXα/β entirely mimics the effect of PAK2 silencing on antiestrogen re-sensitization. These data indicate PAK2/PIX as an effector pathway in IGF1R-mediated antiestrogen resistance

    Atypical developmental trajectories of white matter microstructure in prenatal alcohol exposure: Preliminary evidence from neurite orientation dispersion and density imaging

    Get PDF
    IntroductionFetal alcohol spectrum disorder (FASD), a life-long condition resulting from prenatal alcohol exposure (PAE), is associated with structural brain anomalies and neurobehavioral differences. Evidence from longitudinal neuroimaging suggest trajectories of white matter microstructure maturation are atypical in PAE. We aimed to further characterize longitudinal trajectories of developmental white matter microstructure change in children and adolescents with PAE compared to typically-developing Controls using diffusion-weighted Neurite Orientation Dispersion and Density Imaging (NODDI).Materials and methodsParticipants: Youth with PAE (n = 34) and typically-developing Controls (n = 31) ages 8–17 years at enrollment. Participants underwent formal evaluation of growth and facial dysmorphology. Participants also completed two study visits (17 months apart on average), both of which involved cognitive testing and an MRI scan (data collected on a Siemens Prisma 3 T scanner). Age-related changes in the orientation dispersion index (ODI) and the neurite density index (NDI) were examined across five corpus callosum (CC) regions defined by tractography.ResultsWhile linear trajectories suggested similar overall microstructural integrity in PAE and Controls, analyses of symmetrized percent change (SPC) indicated group differences in the timing and magnitude of age-related increases in ODI (indexing the bending and fanning of axons) in the central region of the CC, with PAE participants demonstrating atypically steep increases in dispersion with age compared to Controls. Participants with PAE also demonstrated greater increases in ODI in the mid posterior CC (trend-level group difference). In addition, SPC in ODI and NDI was differentially correlated with executive function performance for PAE participants and Controls, suggesting an atypical relationship between white matter microstructure maturation and cognitive function in PAE.DiscussionPreliminary findings suggest subtle atypicality in the timing and magnitude of age-related white matter microstructure maturation in PAE compared to typically-developing Controls. These findings add to the existing literature on neurodevelopmental trajectories in PAE and suggest that advanced biophysical diffusion modeling (NODDI) may be sensitive to biologically-meaningful microstructural changes in the CC that are disrupted by PAE. Findings of atypical brain maturation-behavior relationships in PAE highlight the need for further study. Further longitudinal research aimed at characterizing white matter neurodevelopmental trajectories in PAE will be important

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Uncovering the signaling landscape controlling breast cancer cell migration identifies novel metastasis driver genes

    Get PDF
    Ttriple-negative breast cancer (TNBC) is an aggressive and highly metastatic breast cancer subtype. Enhanced TNBC cell motility is a prerequisite of TNBC cell dissemination. Here, we apply an imaging-based RNAi phenotypic cell migration screen using two highly motile TNBC cell lines (Hs578T and MDA-MB-231) to provide a repository of signaling determinants that functionally drive TNBC cell motility. We have screened ~4,200 target genes individually and discovered 133 and 113 migratory modulators of Hs578T and MDA-MB-231, respectively, which are linked to signaling networks predictive for breast cancer progression. The splicing factors PRPF4B and BUD31 and the transcription factor BPTF are essential for cancer cell migration, amplified in human primary breast tumors and associated with metastasis-free survival. Depletion of PRPF4B, BUD31 and BPTF causes primarily down regulation of genes involved in focal adhesion and ECM-interaction pathways. PRPF4B is essential for TNBC metastasis formation in vivo, making PRPF4B a candidate for further drug development
    corecore