15 research outputs found

    Brewer's spent grain, coffee grounds, burdock, and willow-four examples of biowaste and biomass valorization through advanced green extraction technologies

    Get PDF
    This paper explores the transformation of biowastes from food industry and agriculture into high-value products through four examples. The objective is to provide insight into the principles of green transition and a circular economy. The first two case studies focus on the waste generated from the production of widely consumed food items, such as beer and coffee, while the other two examine the potential of underutilized plants, such as burdock and willow, as sources of valuable compounds. Phenolic compounds are the main target in the case of brewer's spent grain, with p-coumaric acid and ferulic acid being the most common. Lipids are a possible target in the case of spent coffee grounds with palmitic (C16:0) and linoleic (C18:2) acid being the major fatty acids among those recovered. In the case of burdock, different targets are reported based on which part of the plant is used. Extracts rich in linoleic and oleic acids are expected from the seeds, while the roots extracts are rich in sugars, phenolic acids such as chlorogenic, caffeic, o-coumaric, syringic, cinnamic, gentisitic, etc. acids, and, interestingly, the high-value compound epicatechin gallate. Willow is well known for being rich in salicin, but picein, (+)-catechin, triandrin, glucose, and fructose are also obtained from the extracts. The study thoroughly analyzes different extraction methods, with a particular emphasis on cutting-edge green technologies. The goal is to promote the sustainable utilization of biowaste and support the green transition to a more environmentally conscious economy.info:eu-repo/semantics/publishedVersio

    Dietary polyacetylenic oxylipins falcarinol and falcarindiol prevent inflammation and colorectal neoplastic transformation:A mechanistic and dose-response study in a rat model

    Get PDF
    Falcarinol (FaOH) and falcarindiol (FaDOH) are cytotoxic and anti-inflammatory polyacetylenic oxylipins, which are commonly found in the carrot family (Apiaceae). FaOH and FaDOH have previously demonstrated a chemopreventive effect on precursor lesions of colorectal cancer (CRC) in azoxymethane (AOM)-induced rats. The purpose of the present study was to elucidate possible mechanisms of action for the preventive effect of FaOH and FaDOH on colorectal precancerous lesions and to determine how this effect was dependent on dose. Gene expression studies performed by RT-qPCR of selected cancer biomarkers in tissue from biopsies of neoplastic tissue revealed that FaOH and FaDOH downregulated NF-őļő≤ and its downstream inflammatory markers TNFőĪ, IL-6, and COX-2. The dose-dependent anti-neoplastic effect of FaOH and FaDOH in AOM-induced rats was investigated in groups of 20 rats receiving a standard rat diet (SRD) supplemented with 0.16, 0.48, 1.4, 7 or 35 ¬Ķg FaOH and FaDOH g‚ąí1 feed in the ratio 1:1 and 20 rats were controls receiving only SRD. Analysis of aberrant crypt foci (ACF) showed that the average number of small ACF (<7 crypts) and large ACF (>7 crypts) decreased with increasing dose of FaOH and FaDOH and that this inhibitory effect on early neoplastic formation of ACF was dose-dependent, which was also the case for the total number of macroscopic neoplasms. The CRC protective effects of apiaceous vegetables are mainly due to the inhibitory effect of FaOH and FaDOH on NF-őļB and its downstream inflammatory markers, especially COX-2

    Development of an In Vitro Screening Platform for the Identification of Partial PPARő≥ Agonists as a Source for Antidiabetic Lead Compounds

    Get PDF
    Type 2 diabetes (T2D) is a metabolic disorder where insulin-sensitive tissues show reduced sensitivity towards insulin and a decreased glucose uptake (GU), which leads to hyperglycaemia. Peroxisome proliferator-activated receptor (PPAR)γ plays an important role in lipid and glucose homeostasis and is one of the targets in the discovery of drugs against T2D. Activation of PPARγ by agonists leads to a conformational change in the ligand-binding domain, a process that alters the transcription of several target genes involved in glucose and lipid metabolism. Depending on the ligands, they can induce different sets of genes that depends of their recruitment of coactivators. The activation of PPARγ by full agonists such as the thiazolidinediones leads to improved insulin sensitivity but also to severe side effects probably due to their behavior as full agonists. Partial PPARγ agonists are compounds with diminished agonist efficacy compared to full agonist that may exhibit the same antidiabetic effect as full agonists without inducing the same magnitude of side effects. In this review, we describe a screening platform for the identification of partial PPARγ agonists from plant extracts that could be promising lead compounds for the development of antidiabetic drugs. The screening platform includes a series of in vitro bioassays, such as GU in adipocytes, PPARγ-mediated transactivation, adipocyte differentiation and gene expression as well as in silico docking for partial PPARγ agonism
    corecore