32 research outputs found

    Automatic plant disease diagnosis using mobile capture devices, applied on a wheat use case

    Get PDF
    Disease diagnosis based on the detection of early symptoms is a usual threshold taken into account for integrated pest management strategies. Early phytosanitary treatment minimizes yield losses and increases the efficacy and efficiency of the treatments. However, the appearance of new diseases associated to new resistant crop variants complicates their early identification delaying the application of the appropriate corrective actions. The use of image based automated identification systems can leverage early detection of diseases among farmers and technicians but they perform poorly under real field conditions using mobile devices. A novel image processing algorithm based on candidate hot-spot detection in combination with statistical inference methods is proposed to tackle disease identification in wild conditions. This work analyses the performance of early identification of three European endemic wheat diseases – septoria, rust and tan spot. The analysis was done using 7 mobile devices and more than 3500 images captured in two pilot sites in Spain and Germany during 2014, 2015 and 2016. Obtained results reveal AuC (Area under the Receiver Operating Characteristic –ROC– Curve) metrics higher than 0.80 for all the analyzed diseases on the pilot tests under real conditions

    Fiber intake and all-cause mortality in the Prevención con Dieta Mediterránea (PREDIMED) study

    Get PDF
    Background: Few observational studies have examined the effect of dietary fiber intake and fruit and vegetable consumption on total mortality and have reported inconsistent results. All of the studies have been conducted in the general population and typically used only a single assessment of diet. Objective: We investigated the association of fiber intake and whole-grain, fruit, and vegetable consumption with all-cause mortality in a Mediterranean cohort of elderly adults at high cardiovascular disease (CVD) risk by using repeated measurements of dietary information and taking into account the effect of a dietary intervention. Design: We followed up 7216 men (55-75 y old) and women (60-75 y old) at high CVD risk in the Prevención con Dieta Mediterránea (PREDIMED) trial for a mean of 5.9 y. Data were analyzed as an observational cohort. Participants were initially free of CVD. A 137-item validated food-frequency questionnaire administered by dietitians was repeated annually to assess dietary exposures (fiber, fruit, vegetable, and whole-grain intakes). Deaths were identified through the continuing medical care of participants and the National Death Index. An independent, blinded Event Adjudication Committee adjudicated causes of death. Cox regression models were used to estimate HRs of death during follow-up according to baseline dietary exposures and their yearly updated changes. Results: In up to 8.7 y of follow-up, 425 participants died. Baseline fiber intake and fruit consumption were significantly associated with lower risk of death [HRs for the fifth compared with the first quintile: 0.63 (95% CI: 0.46, 0.86; P = 0.015) and 0.59 (95% CI: 0.42, 0.82; P = 0.004), respectively]. When the updated dietary information was considered, participants with fruit consumption .210 g/d had 41% lower risk of all-cause mortality (HR: 0.59; 95% CI: 0.44, 0.78). Associations were strongest for CVD mortality than other causes of death. Conclusion: Fiber and fruit intakes are associated with a reduction in total mortality. PREDIMED was registered at controlled-trials.com as ISRCTN35739639. © 2014 American Society for Nutrition.Peer Reviewe

    Holistic understanding of the response of grapevines to foliar application of seaweed extracts

    Get PDF
    Viticulture is highly dependent on phytochemicals to maintain good vineyard health. However, to reduce their accumulation in the environment, green regulations are driving the development of eco-friendly strategies. In this respect, seaweeds have proven to be one of the marine resources with the highest potential as plant protective agents, representing an environmentally-friendly alternative approach for sustainable wine production. The current work follows an interdisciplinary framework to evaluate the capacity of Ulva ohnoi and Rugulopteryx okamurae seaweeds to induce defense mechanisms in grapevine plants. To our knowledge, this is the first study to evaluate Rugulopteryx okamurae as a biostimulator . This macroalgae is relevant since it is an invasive species on the Atlantic and Mediterranean coast causing incalculable economic and environmental burdens. Four extracts (UL1, UL2, RU1 and RU2 developed from Ulva and Rugulopteryx, respectively) were foliar applied to Tempranillo plants cultivated under greenhouse conditions. UL1 and RU2 stood out for their capacity to induce defense genes, such as a PR10, PAL, STS48 and GST1, mainly 24 hours after the first application. The increased expression level of these genes agreed with i) an increase in trans-piceid and trans-resveratrol content, mainly in the RU2 treated leaves, and, ii) an increase in jasmonic acid and decrease in salicylic acid. Moreover, an induction of the activity of the antioxidant enzymes was observed at the end of the experiment, with an increase in superoxide dismutase and catalase in the RU2-treated leaves in particular. Interestingly, while foliar fungal diversity was not influenced by the treatments, alga extract amendment modified fungal composition, RU2 application enriching the content of various groups known for their biocontrol activity. Overall, the results evidenced the capacity of Rugulopteryx okamurae for grapevine biostimulation, inducing the activation of several secondary metabolite pathways and promoting the abundance of beneficial microbiota involved in grapevine protection. While further studies are needed to unravel the bioactive compound(s) involved, including conducting field experiments etc., the current findings are the first steps towards the inclusion of Rugulopteryx okamurae in a circular scheme that would reduce its accumulation on the coast and benefit the viticulture sector at the same time

    Post-Franco Theatre

    Get PDF
    In the multiple realms and layers that comprise the contemporary Spanish theatrical landscape, “crisis” would seem to be the word that most often lingers in the air, as though it were a common mantra, ready to roll off the tongue of so many theatre professionals with such enormous ease, and even enthusiasm, that one is prompted to wonder whether it might indeed be a miracle that the contemporary technological revolution – coupled with perpetual quandaries concerning public and private funding for the arts – had not by now brought an end to the evolution of the oldest of live arts, or, at the very least, an end to drama as we know it

    Continuous-Flow O-Alkylation of Biobased Derivatives with Dialkyl Carbonates in the Presence of Magnesium-Aluminium Hydrotalcites as Catalyst Precursors

    Get PDF
    The base-catalysed reactions of OH-bearing biobased derivatives (BBDs) including glycerol formal, solketal, glycerol carbonate, furfuryl alcohol and tetrahydrofurfuryl alcohol with nontoxic dialkyl carbonates (dimethyl and diethyl carbonate) were explored under continuous-flow (CF) conditions in the presence of three Na-exchanged Y- and X-faujasites (FAUs) and four Mg\u2013Al hydrotalcites (HTs). Compared to previous etherification protocols mediated by dialkyl carbonates, the reported procedure offers substantial improvements not only in terms of (chemo)selectivity but also for the recyclability of the catalysts, workup, ease of product purification and, importantly, process intensification. Characterisation studies proved that both HT30 and KW2000 hydrotalcites acted as catalyst precursors: during the thermal activation pre-treatments, the typical lamellar structure of the hydrotalcite was broken down gradually into a MgO-like phase (periclase) or rather a magnesia\u2013alumina solid solution, which was the genuine catalytic phase

    Deep learning for the differentiation of downy mildew and spider mite in grapevine under field conditions

    No full text
    Diseases and pests cause serious damage in crop production, reducing yield and fruit quality. Their identification is often time-consuming and requires trained personnel. New sensing technologies and artificial intelligence could be used for automatic identification of disease and pest symptoms on grapevine in precision viticulture. The aim of this work was to apply deep learning modelling and computer vision for the detection and differentiation of downy mildew and spider mite symptoms in grapevine leaves under field conditions. RGB images of grapevine canopy leaves with downy mildew symptoms, with spider mite symptoms and without symptoms were taken under field conditions in a commercial vineyard. The images were prepared using computer vision techniques to increase disease visual features. Finally, deep learning was used to train a model capable of differentiating leaf images of the three classes. An accuracy up to 0.94 (F1-score of 0.94) was obtained by classifying leaves with downy mildew, spider mite and without symptoms at the same time, using a hold-out validation. Additionally, accuracies between 0.89 and 0.91 (F1-scores between 0.89 and 0.91) were obtained in the binary classification of the disease and pest, obtaining the best results in differentiating downy mildew from spider mite symptoms. This high accuracy demonstrates the effectiveness of deep learning and computer vision techniques for the classification of grapevine leaf images taken under field conditions, automatically finding complex features capable of differentiating leaves with spider mite symptoms, with downy mildew symptoms and without any. These results prove the potential of these non-invasive techniques in the detection and differentiation of pests and diseases in commercial crop production
    corecore