51 research outputs found

    Maya chemistry of organic inorganic hybrid materials: isomerization, cyclicization and redox tuning of organic dyes attached to porous silicates

    Full text link
    [EN] Association of indigo and lapachol dyes to aluminosilicate clays yields polyfunctional organic ‚Äď inorganic hybrid materials forming Maya Blue-like systems. Upon partial removing of clay's zeolitic water by moderate thermal treatment, abundant isomerization, cyclicization and oxidation reactions occur defining a‚Äė Maya chemistry whose complexity could explain the versatile use of such materials in the pre-Columbian cultures and permits the preparation of polyfunctional materials potentially usable for therapeutic and catalytic purposes.Financial support is gratefully acknowledged from the MEC Projects CTQ2011-28079-CO3-01 and 02 which are also supported with ERDF funds.Domenech Carbo, A.; Valle-Algarra, FM.; Domenech Carbo, MT.; Osete Cortina, L.; Domine, ME. (2013). Maya chemistry of organic inorganic hybrid materials: isomerization, cyclicization and redox tuning of organic dyes attached to porous silicates. RSC Advances. 3:20099-20105. https://doi.org/10.1039/c3ra42890gS20099201053G√≥mez-Romero, P., & Sanchez, C. (2005). Hybrid materials. Functional properties. From Maya Blue to 21st century materials. New J. Chem., 29(1), 57-58. doi:10.1039/b416075bCalzaferri, G., Huber, S., Maas, H., & Minkowski, C. (2003). Host‚ÄďGuest Antenna Materials. Angewandte Chemie International Edition, 42(32), 3732-3758. doi:10.1002/anie.200300570Dom√©nech, A., Dom√©nech-Carb√≥, M. T., S√°nchez del R√≠o, M., V√°zquez de Agredos Pascual, M. L., & Lima, E. (2009). Maya Blue as a nanostructured polyfunctional hybrid organic‚Äďinorganic material: the need to change paradigms. New Journal of Chemistry, 33(12), 2371. doi:10.1039/b901942aHubbard, B., Kuang, W., Moser, A., Facey, G. A., & Detellier, C. (2003). Structural study of Maya Blue: textural, thermal and solidstate multinuclear magnetic resonance characterization of the palygorskite-indigo and sepiolite-indigo adducts. Clays and Clay Minerals, 51(3), 318-326. doi:10.1346/ccmn.2003.0510308Fois, E., Gamba, A., & Tilocca, A. (2003). On the unusual stability of Maya blue paint: molecular dynamics simulations. Microporous and Mesoporous Materials, 57(3), 263-272. doi:10.1016/s1387-1811(02)00596-6S√°nchez del R√≠o, M., Martinetto, P., Somogyi, A., Reyes-Valerio, C., Dooryh√©e, E., Peltier, N., ‚Ķ Dran, J.-C. (2004). Microanalysis study of archaeological mural samples containing Maya blue pigment. Spectrochimica Acta Part B: Atomic Spectroscopy, 59(10-11), 1619-1625. doi:10.1016/j.sab.2004.07.027Giustetto, R., Llabr√©s i Xamena, F. X., Ricchiardi, G., Bordiga, S., Damin, A., Gobetto, R., & Chierotti, M. R. (2005). Maya Blue:¬† A Computational and Spectroscopic Study. The Journal of Physical Chemistry B, 109(41), 19360-19368. doi:10.1021/jp048587hDom√©nech, A., Dom√©nech-Carb√≥, M. T., & V√°zquez de Agredos Pascual, M. L. (2006). Dehydroindigo:¬† A New Piece into the Maya Blue Puzzle from the Voltammetry of Microparticles Approach. The Journal of Physical Chemistry B, 110(12), 6027-6039. doi:10.1021/jp057301lDom√©nech, A., Dom√©nech-Carb√≥, M. T., & V√°zquez de Agredos Pascual, M. L. (2007). Indigo/Dehydroindigo/Palygorskite Complex in Maya Blue:‚ÄČ An Electrochemical Approach. The Journal of Physical Chemistry C, 111(12), 4585-4595. doi:10.1021/jp067369gDom√©nech, A., Dom√©nech-Carb√≥, M. T., & de Agredos Pascual, M. L. V. (2007). Chemometric Study of Maya Blue from the Voltammetry of Microparticles Approach. Analytical Chemistry, 79(7), 2812-2821. doi:10.1021/ac0623686DOM√ČNECH, A., DOM√ČNECH-CARB√ď, M. T., & V√ĀZQUEZ DE AGREDOS PASCUAL, M. L. (2009). CORRELATION BETWEEN SPECTRAL, SEM/EDX AND ELECTROCHEMICAL PROPERTIES OF MAYA BLUE: A CHEMOMETRIC STUDY*. Archaeometry, 51(6), 1015-1034. doi:10.1111/j.1475-4754.2009.00453.xDom√©nech, A., Dom√©nech-Carb√≥, M. T., & V√°zquez‚ÄÖde‚ÄÖAgredos-Pascual, M. L. (2011). From Maya Blue to ¬ęMaya Yellow¬Ľ: A Connection between Ancient Nanostructured Materials from the Voltammetry of Microparticles. Angewandte Chemie International Edition, 50(25), 5741-5744. doi:10.1002/anie.201100921Dom√©nech, A., Dom√©nech-Carb√≥, M. T., Vidal-Lorenzo, C., & de Agredos-Pascual, M. L. V. (2011). Insights into the Maya Blue Technology: Greenish Pellets from the Ancient City of La Blanca. Angewandte Chemie International Edition, 51(3), 700-703. doi:10.1002/anie.201106562Dom√©nech, A., Dom√©nech-Carb√≥, M. T., S√°nchez del R√≠o, M., Goberna, S., & Lima, E. (2009). Evidence of Topological Indigo/Dehydroindigo Isomers in Maya Blue-Like Complexes Prepared from Palygorskite and Sepiolite. The Journal of Physical Chemistry C, 113(28), 12118-12131. doi:10.1021/jp900711kDom√©nech, A., Dom√©nech-Carb√≥, M. T., del R√≠o, M. S., & de Agredos Pascual, M. L. V. (2008). Comparative study of different indigo-clay Maya Blue-like systems using the voltammetry of microparticles approach. Journal of Solid State Electrochemistry, 13(6), 869-878. doi:10.1007/s10008-008-0616-1Dom√©nech-Carb√≥, A., Dom√©nech-Carb√≥, M. T., Valle-Algarra, F. M., Domine, M. E., & Osete-Cortina, L. (2013). On the dehydroindigo contribution to Maya Blue. Journal of Materials Science, 48(20), 7171-7183. doi:10.1007/s10853-013-7534-zDom√©nech-Carb√≥, A., Valle-Algarra, F. M., Dom√©nech-Carb√≥, M. T., Domine, M. E., Osete-Cortina, L., & Gimeno-Adelantado, J. V. (2013). Redox Tuning and Species Distribution in Maya Blue-Type Materials: A Reassessment. ACS Applied Materials & Interfaces, 5(16), 8134-8145. doi:10.1021/am402193uRondaŐÉo, R., Seixas de Melo, J. S., BonifaŐĀcio, V. D. B., & Melo, M. J. (2010). Dehydroindigo, the Forgotten Indigo and Its Contribution to the Color of Maya Blue. The Journal of Physical Chemistry A, 114(4), 1699-1708. doi:10.1021/jp907718kTilocca, A., & Fois, E. (2009). The Color and Stability of Maya Blue: TDDFT Calculations. The Journal of Physical Chemistry C, 113(20), 8683-8687. doi:10.1021/jp810945aGiustetto, R., Seenivasan, K., Bonino, F., Ricchiardi, G., Bordiga, S., Chierotti, M. R., & Gobetto, R. (2011). Host/Guest Interactions in a Sepiolite-Based Maya Blue Pigment: A Spectroscopic Study. The Journal of Physical Chemistry C, 115(34), 16764-16776. doi:10.1021/jp203270cGiustetto, R., & Wahyudi, O. (2011). Sorption of red dyes on palygorskite: Synthesis and stability of red/purple Mayan nanocomposites. Microporous and Mesoporous Materials, 142(1), 221-235. doi:10.1016/j.micromeso.2010.12.004Giustetto, R., Seenivasan, K., Pellerej, D., Ricchiardi, G., & Bordiga, S. (2012). Spectroscopic characterization and photo/thermal resistance of a hybrid palygorskite/methyl red Mayan pigment. Microporous and Mesoporous Materials, 155, 167-176. doi:10.1016/j.micromeso.2012.01.024S√°nchez del R√≠o, M., Boccaleri, E., Milanesio, M., Croce, G., van Beek, W., Tsiantos, C., ‚Ķ Garc√≠a-Romero, E. (2009). A combined synchrotron powder diffraction and vibrational study of the thermal treatment of palygorskite‚Äďindigo to produce Maya blue. Journal of Materials Science, 44(20), 5524-5536. doi:10.1007/s10853-009-3772-5Mondelli, C., R√≠o, M. S. del, Gonz√°lez, M. A., Magazz√ļ, A., Cavallari, C., Su√°rez, M., ‚Ķ Romano, P. (2012). Role of water on formation and structural features of Maya blue. Journal of Physics: Conference Series, 340, 012109. doi:10.1088/1742-6596/340/1/012109Dejoie, C., Martinetto, P., Dooryh√©e, E., Strobel, P., Blanc, S., Bordat, P., ‚Ķ Anne, M. (2010). Indigo@Silicalite: a New Organic‚ąíInorganic Hybrid Pigment. ACS Applied Materials & Interfaces, 2(8), 2308-2316. doi:10.1021/am100349bDejoie, C., Martinetto, P., Dooryh√©e, E., Brown, R., Blanc, S., Bordat, P., ‚Ķ Anne, M. (2011). Diffusion Of Indigo Molecules Inside The Palygorskite Clay Channels. MRS Proceedings, 1319. doi:10.1557/opl.2011.924Ovarlez, S., Giulieri, F., Chaze, A.-M., Delamare, F., Raya, J., & Hirschinger, J. (2009). The Incorporation of Indigo Molecules in Sepiolite Tunnels. Chemistry - A European Journal, 15(42), 11326-11332. doi:10.1002/chem.200901482Ovarlez, S., Giulieri, F., Delamare, F., Sbirrazzuoli, N., & Chaze, A.-M. (2011). Indigo‚Äďsepiolite nanohybrids: Temperature-dependent synthesis of two complexes and comparison with indigo‚Äďpalygorskite systems. Microporous and Mesoporous Materials, 142(1), 371-380. doi:10.1016/j.micromeso.2010.12.025Fran√ß, N. A., Giulieri, oise, Ovarlez, S., & Chaze, A. M. (2012). Indigo/sepiolite nanohybrids: stability of natural pigments inspired by Maya blue. International Journal of Nanotechnology, 9(3/4/5/6/7), 605. doi:10.1504/ijnt.2012.045334Tsiantos, C., Tsampodimou, M., Kacandes, G. H., S√°nchez del R√≠o, M., Gionis, V., & Chryssikos, G. D. (2011). Vibrational investigation of indigo‚Äďpalygorskite association(s) in synthetic Maya blue. Journal of Materials Science, 47(7), 3415-3428. doi:10.1007/s10853-011-6189-xLima, E., Guzm√°n, A., Vera, M., Rivera, J. L., & Fraissard, J. (2012). Aged Natural and Synthetic Maya Blue-Like Pigments: What Difference Does It Make? The Journal of Physical Chemistry C, 116(7), 4556-4563. doi:10.1021/jp207602mKumagai, Y., Tsurutani, Y., Shinyashiki, M., Homma-Takeda, S., Nakai, Y., Yoshikawa, T., & Shimojo, N. (1997). Bioactivation of lapachol responsible for DNA scission by NADPH-cytochrome P450 reductase. Environmental Toxicology and Pharmacology, 3(4), 245-250. doi:10.1016/s1382-6689(97)00019-7Nasiri, H. R., Bolte, M., & Schwalbe, H. (2008). Electrochemical and crystal structural analysis ofőĪ- and dehydro-őĪ-lapachones. Natural Product Research, 22(14), 1225-1230. doi:10.1080/14786410701654925Garkavtsev, I., Chauhan, V. P., Wong, H. K., Mukhopadhyay, A., Glicksman, M. A., Peterson, R. T., & Jain, R. K. (2011). Dehydro-¬†-lapachone, a plant product with antivascular activity. Proceedings of the National Academy of Sciences, 108(28), 11596-11601. doi:10.1073/pnas.1104225108Dom√©nech-Carb√≥, A., Labuda, J., & Scholz, F. (2012). Electroanalytical chemistry for the analysis of solids: Characterization and classification (IUPAC Technical Report). Pure and Applied Chemistry, 85(3), 609-631. doi:10.1351/pac-rep-11-11-13Hoffman, R. C., Zilber, R. C., & Hoffman, R. E. (2010). NMR spectroscopic study of the Murex trunculus dyeing process. Magnetic Resonance in Chemistry, 48(11), 892-895. doi:10.1002/mrc.2685Laatsch, H., Thomson, R. H., & Cox, P. J. (1984). Spectroscopic properties of violacein and related compounds: crystal structure of tetramethylviolacein. Journal of the Chemical Society, Perkin Transactions 2, (8), 1331. doi:10.1039/p29840001331Silva, J. F. M. da, Garden, S. J., & Pinto, A. C. (2001). The chemistry of isatins: a review from 1975 to 1999. Journal of the Brazilian Chemical Society, 12(3), 273-324. doi:10.1590/s0103-50532001000300002Dom√©nech-Carb√≥, A., Martini, M., de Carvalho, L. M., & Dom√©nech-Carb√≥, M. T. (2012). Square wave voltammetric determination of the redox state of a reversibly oxidized/reduced depolarizer in solution and in solid state. Journal of Electroanalytical Chemistry, 684, 13-19. doi:10.1016/j.jelechem.2012.08.016Dom√©nech, A., Dom√©nech-Carb√≥, M. T., Osete-Cortina, L., & Montoya, N. (2013). Application of solid-state electrochemistry techniques to polyfunctional organic‚Äďinorganic hybrid materials: The Maya Blue problem. Microporous and Mesoporous Materials, 166, 123-130. doi:10.1016/j.micromeso.2012.04.031Bond, A. M., Marken, F., Hill, E., Compton, R. G., & H√ľgel, H. (1997). The electrochemical reduction of indigo dissolved in organic solvents and as a solid mechanically attached to a basal plane pyrolytic graphite electrode immersed in aqueous electrolyte solution. Journal of the Chemical Society, Perkin Transactions 2, (9), 1735-1742. doi:10.1039/a701003fHe, H., Ding, Z., & Shoesmith, D. W. (2009). The determination of electrochemical reactivity and sustainability on individual hyper-stoichiometric UO2+x grains by Raman microspectroscopy and scanning electrochemical microscopy. Electrochemistry Communications, 11(8), 1724-1727. doi:10.1016/j.elecom.2009.07.013Guadagnini, L., Maljusch, A., Chen, X., Neugebauer, S., Tonelli, D., & Schuhmann, W. (2009). Visualization of electrocatalytic activity of microstructured metal hexacyanoferrates by means of redox competition mode of scanning electrochemical microscopy (RC-SECM). Electrochimica Acta, 54(14), 3753-3758. doi:10.1016/j.electacta.2009.01.076Yasarawan, N., & van Duijneveldt, J. S. (2008). Dichroism in Dye-Doped Colloidal Liquid Crystals. Langmuir, 24(14), 7184-7192. doi:10.1021/la800849yPires, S. M. G., Paula, R. D., Sim√Ķes, M. M. Q., Silva, A. M. S., Domingues, M. R. M., Santos, I. C. M. S., ‚Ķ Cavaleiro, J. A. S. (2011). Novel biomimetic oxidation of lapachol with H2O2 catalysed by a manganese(iii) porphyrin complex. RSC Advances, 1(7), 1195. doi:10.1039/c1ra00578bNiehues, M., Barros, V. P., Emery, F. da S., Dias-Baruffi, M., Assis, M. das D., & Lopes, N. P. (2012). Biomimetic in¬†vitro oxidation of lapachol: A model to predict and analyse the in¬†vivo phase I metabolism of bioactive compounds. European Journal of Medicinal Chemistry, 54, 804-812. doi:10.1016/j.ejmech.2012.06.042Ferraz, P. A. ., de Abreu, F. C., Pinto, A. V., Glezer, V., Tonholo, J., & Goulart, M. O. . (2001). Electrochemical aspects of the reduction of biologically active 2-hydroxy-3-alkyl-1,4-naphthoquinones. Journal of Electroanalytical Chemistry, 507(1-2), 275-286. doi:10.1016/s0022-0728(01)00439-9Abreu, F. C., Goulart, M. O. F., & Brett, A. M. O. (2002). Reduction of Lapachones in Aqueous Media at a Glassy Carbon Electrode. Electroanalysis, 14(1), 29-34. doi:10.1002/1521-4109(200201)14:13.0.co;2-aNgameni, E., Tonle, I. K., Nanseu, C. P., & Wandji, R. (2000). Voltammetry Study of 2-Hydroxy-3-isopropenyl-1,4-naphthoquinone Using a Carbon Paste Electrode. Electroanalysis, 12(11), 847-852. doi:10.1002/1521-4109(200007)12:113.0.co;2-9Goulart, M. O. F., Lima, N. M. F., Sant‚ÄôAna, A. E. G., Ferraz, P. A. L., Cavalcanti, J. C. M., Falkowski, P., ‚Ķ Liwo, A. (2004). Electrochemical studies of isolapachol with emphasis on oxygen interaction with its radical anions. Journal of Electroanalytical Chemistry, 566(1), 25-29. doi:10.1016/j.jelechem.2003.10.043Jungbluth, G., R√ľhling, I., & Ternes, W. (2000). Oxidation of flavonols with Cu(II), Fe(II) and Fe(III) in aqueous media. Journal of the Chemical Society, Perkin Transactions 2, (9), 1946-1952. doi:10.1039/b002323jCaamal-Fuentes, E., Torres-Tapia, L. W., Sim√°-Polanco, P., Peraza-S√°nchez, S. R., & Moo-Puc, R. (2011). Screening of plants used in Mayan traditional medicine to treat cancer-like symptoms. Journal of Ethnopharmacology, 135(3), 719-724. doi:10.1016/j.jep.2011.04.004Arnold, D. E., Bohor, B. F., Neff, H., Feinman, G. M., Williams, P. R., Dussubieux, L., & Bishop, R. (2012). The first direct evidence of pre-columbian sources of palygorskite for Maya Blue. Journal of Archaeological Science, 39(7), 2252-2260. doi:10.1016/j.jas.2012.02.03

    Nivolumab versus docetaxel in previously treated advanced non-small-cell lung cancer (CheckMate 017 and CheckMate 057): 3-year update and outcomes in patients with liver metastases

    Get PDF
    Abstract Background Long-term data with immune checkpoint inhibitors in non-small-cell lung cancer (NSCLC) are limited. Two phase III trials demonstrated improved overall survival (OS) and a favorable safety profile with the anti-programmed death-1 antibody nivolumab versus docetaxel in patients with previously treated advanced squamous (CheckMate 017) and nonsquamous (CheckMate 057) NSCLC. We report results from ‚Č•3 years' follow-up, including subgroup analyses of patients with liver metastases, who historically have poorer prognosis among patients with NSCLC. Patients and methods Patients were randomized 1 : 1 to nivolumab (3 mg/kg every 2 weeks) or docetaxel (75 mg/m2 every 3 weeks) until progression or discontinuation. The primary end point of each study was OS. Patients with baseline liver metastases were pooled across studies by treatment for subgroup analyses. Results After 40.3 months' minimum follow-up in CheckMate 017 and 057, nivolumab continued to show an OS benefit versus docetaxel: estimated 3-year OS rates were 17% [95% confidence interval (CI), 14% to 21%] versus 8% (95% CI, 6% to 11%) in the pooled population with squamous or nonsquamous NSCLC. Nivolumab was generally well tolerated, with no new safety concerns identified. Of 854 randomized patients across both studies, 193 had baseline liver metastases. Nivolumab resulted in improved OS compared with docetaxel in patients with liver metastases (hazard ratio, 0.68; 95% CI, 0.50‚Äď0.91), consistent with findings from the overall pooled study population (hazard ratio, 0.70; 95% CI, 0.61‚Äď0.81). Rates of treatment-related hepatic adverse events (primarily grade 1‚Äď2 liver enzyme elevations) were slightly higher in nivolumab-treated patients with liver metastases (10%) than in the overall pooled population (6%). Conclusions After 3 years' minimum follow-up, nivolumab continued to demonstrate an OS benefit versus docetaxel in patients with advanced NSCLC. Similarly, nivolumab demonstrated an OS benefit versus docetaxel in patients with liver metastases, and remained well tolerated. Clinical trial registration CheckMate 017: NCT01642004; CheckMate 057: NCT01673867

    Vegetation type is an important predictor of the arctic summer land surface energy budget

    Get PDF
    Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994-2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm(-2)) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.An international team of researchers finds high potential for improving climate projections by a more comprehensive treatment of largely ignored Arctic vegetation types, underscoring the importance of Arctic energy exchange measuring stations.Peer reviewe

    Vegetation type is an important predictor of the arctic summer land surface energy budget

    Get PDF
    Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994‚Äď2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm‚ąí2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types

    Halogens in the coastal snow pack near Barrow, Alaska: Evidence for active bromine air-snow chemistry during springtime

    No full text
    International audienceWe measured halide concentrations of snow and frost flowers in the vicinity of Barrow, Alaska. We find that the ratio of bromide to sodium in frost flowers is slightly enhanced (‚Čą10%) as compared to sea water. In contrast, the ratio of bromide to sodium in some snow samples is more than an order of magnitude enhanced, and in other samples is more than an order of magnitude depleted. We interpret the bromide depleted snow as having been processed by heterogeneous chemistry and providing reactive halogen compounds to the atmosphere. The eventual end product of reactive bromine chemistry is HBr that is then deposited over a wide region, enhancing bromide in inland snow samples. Although frost flowers or open leads are likely to be the original source of halides that become reactive halogen gases, we find that the bromide release often occurs subsequent to production of aerosol from marine sources

    Salinity and SO4 and Br enrichment of seawater and frost flowers near Barrow, Alaska

    No full text
    Frost flowers have been proposed to be the major source of sea-salt aerosol to the atmosphere during polar winter and a source of reactive bromine during polar springtime. However little is known about their bulk chemical composition or microstructure, two important factors that may affect their ability to produce aerosols and provide chemically reactive surfaces for exchange with the atmosphere. Therefore, we chemically analyzed 28 samples of frost flowers and parts of frost flowers collected from sea ice off of northern Alaska. Our results support the proposed mechanism for frost flower growth that suggests water vapor deposition forms an ice skeleton that wicks brine present on newly grown sea ice. We measured a high variability in sulfate enrichment factors (with respect to chloride) in frost flowers and seawater from the vicinity of freezing sea ice. The variability in sulfate indicates that mirabilite precipitation (Na2SO4 x 10 H2O) occurs during frost flower growth. Brine wicked up by frost flowers is typically sulfate depleted, in agreement with the theory that frost flowers are related to sulfate-depleted aerosol observed in Antarctica. The bromide enrichment factors we measured in frost flowers are within error of seawater composition, constraining the direct reactive losses of bromide from frost flowers. We combined the chemical composition measurements with temperature observations to create a conceptual model of possible scenarios for frost flower microstructure development

    On the dehydroindigo contribution to Maya Blue

    Full text link
    A series of data from voltammetric, spectral, and UPLC‚ÄďMS and Py‚ÄďGC‚ÄďMS analyses of extracts from synthetic Maya Blue-type specimens provides evidence on the presence of a significant amount of dehydroindigo, identified on the basis of its MS, FTIR, and UV‚ÄďVis signatures, accompanying indigo and other minority compounds, supporting the view of this material as a complex polyfunctional organic‚Äďinorganic hybrid material. Estimates of dehydroindigo/indigo in-depth distribution and thermochemical data for the dye association to the clay from chromatographic and voltammetric data are provided.Financial support is gratefully acknowledged from the MICINN Projects CTQ2011-28079-CO3-01 and 02 which are also supported with ERDF funds.Domenech Carbo, A.; Domenech Carbo, MT.; Valle-Algarra, FM.; Domine, ME.; Osete Cortina, L. (2013). On the dehydroindigo contribution to Maya Blue. Journal of Materials Science. 48:7171-7183. https://doi.org/10.1007/s10853-013-7534-zS7171718348Merwin HE (1931) In: Morris HE, Charlot J, Morris AA (eds) Yucatan, Temple Warriors at Chitchen Itza. Carnegie Institution, Washington, DC, p 356Gettens RJ, Stout GL (eds) (1946) Paint materials: a short encyclopedia. Van Nostrand, New YorkReyes-Valerio C (1993) De Bonampak al Templo Mayor: el azul Maya en Mesoam√©rica. Siglo XXI, M√©xicoRomero P, S√°nchez C (2005) New J Chem 29:57Shepard AO (1962) Am Antiq 27:565Gettens RJ (1962) Am Antiq 27:557Van Olphen H (1967) Science 154:645Cooksey CJ (2012) Biotech Histochem 87:439Kleber R, Masschelein-Kleiner R, Thissen J (1967) Stud Conservat 12:41Jos√©-Yacam√°n M, Rend√≥n L, Arenas J, Serra-Puche MC (1996) Science 273:223Fern√°ndez ME, Ascencio JA, Mendoza-Anaya D, Rodr√≠guez-Lugo V, Jos√©-Yacam√°n M (1999) J Mater Sci 34:5243. doi: 10.1023/A:1004724316051Polette LA, Meitzner G, Jos√©-Yacam√°n M, Chianelli RR (2002) Microchem J 71:167Chiari G, Giustetto R, Ricchiardi G (2003) Eur J Mineral 15:21Hubbard B, Kuang W, Moser A, Facey GA, Detellier C (2003) Clays Clay Miner 51:318Fois E, Gamba A, Tilocca A (2003) Microporous Mesoporous Mater 57:263Reinen D, K√∂hl P, M√ľller C (2004) Zeich Anorg Allgem Chem 630:97S√°nchez del R√≠o M, Martinetto P, Somogyi A, Reyes-Valerio C, Dooryh√©e E, Peltier N, Alianelli L, Moignard B, Pichon L, Calligaro T, Dran J-C (2004) Spectrochim Acta B 59:1619S√°nchez del Rio M, Sodo A, Eeckhout SG, Neisius T, Martinetto P, Dooryhee E, Reyes-Valerio C (2005) Nucl Instrum Methods Phys Res B 238:50Giustetto R, Llabres i Xamena FX, Ricchiardi G, Bordiga S, Damin A, Gobetto R, Chierotti MR (2005) J Phys Chem B 109:19360Chianelli RR, Perez De la Rosa M, Meitzner G, Siadati M, Berhault G, Mehta A (2005) J Synchrotron Radiat 12:129Manciu FS, Reza L, Polette LA, Torres B, Chianelli RR (2007) J Raman Spectrosc 38:1193Polette-Niewold LA, Manciu FS, Torres B, Alvarado M, Chianelli RR (2007) J Inorg Biochem 101:1958Fuentes ME, Pe√Īa B, Contreras C, Montero AL, Chianelli R, Alvarado M, Olivas R, Rodr√≠guez LM, Camacho H, Montero-Cabrera LA (2008) Int J Quantum Chem 108:1664Chiari G, Giustetto R, Druzik J, Doehne E, Ricchiardi G (2008) Appl Phys A 90:3Tilocca A, Fois E (2009) J PhysChem C 113:8683S√°nchez del R√≠o M, Boccaleri E, Milanesio M, Croce G, van Beek W, Tsiantos C (2009) J Mater Sci 44:5524. doi: 10.1007/s10853-009-3772-5S√°nchez del R√≠o M, Dom√©nech A, Dom√©nech MT, V√°zquez ML, Su√°rez M, Garc√≠a-Romero E (2011) Dev Clay Sci 3:453Mondelli C, Sanchez del Rio M, Gonzalez MA, Magazz√ļ A, Cavalleri C, Su√°rez M, Garc√≠a-Romero E, Romano P (2012) J Phys Conf Ser 340:012109Scholz F, Meyer B (1998) In: Bard AJ, Rubinstein I (eds) Electroanalytical chemistry. A series of advances, vol 20. Marcel Dekker, New York, p 1Scholz F, Schr√∂der U, Gulabowski R (2005) Electrochemistry of immobilized particles and droplets. Springer, BerlinDom√©nech A, Labuda J, Scholz F (2013) Pure Appl Chem 85:609Dom√©nech A, Dom√©nech MT, V√°zquez ML (2006) J Phys Chem B 110:6027Dom√©nech A, Dom√©nech MT, V√°zquez ML (2007) J Phys Chem C 111:4585Dom√©nech A, Dom√©nech MT, V√°zquez ML (2007) Anal Chem 79:2812Dom√©nech A, Dom√©nech MT, V√°zquez ML (2009) Archaeometry 51:1015Dom√©nech A, Dom√©nech MT, S√°nchez del R√≠o M, Goberna S, Lima E (2009) J Phys Chem C 113:12118Dom√©nech A, Dom√©nech MT, S√°nchez del R√≠o M, V√°zquez ML (2009) J Solid State Electrochem 13:869Dom√©nech A (2010) Electrochemistry of porous materials. Taylor & Francis, Boca RatonRondao R, De Melo JS, Bonifacio BD, Melo M (2010) J Phys Chem A 114:1699Giustetto R, Seenivasan K, Bonino F, Ricchiardi G, Bordiga S, Chierotti MR, Gobetto R (2011) J Phys Chem C 115:16764Tsiantos C, Tsampodimou M, Kacandes GH, S√°nchez del R√≠o M, Gionis V, Chryssikos GD (2012) J Mater Sci 47:3415. doi: 10.1007/s10853-011-6189-xLima E, Guzm√°n A, Vera M, Rivera JL, Fraissard J (2012) J Phys Chem C 116:4556Sanz E, Arteaga A, Garc√≠a MA, C√°mara C, Dietz C (2012) J Archaeol Sci 39:3516Dom√©nech A, Dom√©nech MT, S√°nchez del R√≠o M, V√°zquez ML, Lima E (2009) New J Chem 33:2371Vandenabeele P, Bod√© S, Alonso A, Moens L (2005) Spectrochim Acta A 61:2349Dom√©nech A, Dom√©nech MT, V√°zquez ML (2011) Angew Chem Int Ed 50:5741Dom√©nech A, Dom√©nech MT, Vidal C, V√°zquez ML (2012) Angew Chem Int Ed 51:700Giustetto R, Seenivasan K, Pellerej D, Ricchiardi G, Bordiga S (2012) Microporous Mesoporous Mater 155:167Kalb L (1909) Ber Dtsch Chem Ges 42:3642Klessinger M, Luettke W (1963) Tetrahedron 19(Suppl 2):315Hein M, Phuong NTB, Michalik D, G√∂rls H, Lalk M, Langer P (2006) Tetrahedron Lett 47:5741Yasarawan N, van Duijneveldt JS (2008) Langmuir 24:7184Dom√©nech A, Dom√©nech M, Osete L, Montoya N (2013) Microporous Mesoporous Mater 2013(166):123Perp√©te EA, Preat J, Andr√© J-M, Jacquemin D (2006) J Phys Chem A 110:5629Diculescu VC, Kumbhat S, Oliveira-Brett AM (2006) Anal Chim Acta 575:190Wille E, L√ľttke W (1973) Chem Ber 106:3240Seixas de Melo J, Moura AP, Melo MJ (2004) J Phys Chem A 108:6975Tatsch E, Schrader B (1995) J Raman Spectrosc 26:467S√°nchez del R√≠o M, Picquart M, Haro-Poniatowski E, van Elslande E, Uc VH (2006) J Raman Spectrosc 37:1046Tomkinson J, Bacci M, Picollo M, Colognesi D (2009) Vib Spectrosc 50:268Bruneel JL, Lassegues JC, Sourisseau C (2002) J Raman Spectrosc 33:815Zheng W, Angelopoulos M, Epstein AJ, MacDiarmid AG (1997) Macromolecules 30:2953Trchova M, Stejskal J, Prokes J (1999) Synth Met 101:840Iwan A, Kaczmarczyk B, Janeczek H, Sek D, Ostrowski S (2007) Spectrochim Acta A 66:1030Fabbri D, Chiavari G, Ling H (2000) J Anal Appl Pyrolysis 56:167Chiavari G, Fabbri D, Prati S, Zappi A (2005) Chromatographia 61:403Casas MJ, Dom√©nech MT (2005) Anal Bional Chem 382:259Gross JH (2004) Mass spectrometry. Springer, BerlinDom√©nech A, Dom√©nech MT, V√°zquez ML (2007) J Solid State Electrochem 11:1335He JB, Ma G-H, Chen J-C, Yao Y, Wang Y (2010) Electrochim Acta 55:4845Dom√©nech A, Martini M, De Carvalho L, Dom√©nech MT (2012) J Electroanal Chem 684:1
    • ‚Ķ
    corecore