67 research outputs found

    Routing of Hansenula polymorpha alcohol oxidase:An alternative peroxisomal protein-sorting machinery

    Get PDF
    Import of Hansenula polymorpha alcohol oxidase (AO) into peroxisomes is dependent on the PTS1 receptor, HpPex5p. The PTS1 of AO (-LARF) is sufficient to direct reporter proteins to peroxisomes. To study AO sorting in more detail, strains producing mutant AO proteins were constructed. AO containing a mutation in the FAD binding fold was mislocalized to the cytosol. This indicates that the PTS1 of AO is not sufficient for import of AO. AO protein in which the PTS1 was destroyed (-LARA) was normally sorted to peroxisomes. Moreover, C-terminal deletions of up to 16 amino acids did not significantly affect AO import, indicating that the PTS1 was not necessary for targeting. Consistent with these observations we found that AO import occurred independent from the C-terminal TPR-domain of HpPex5p, known to bind PTS1 peptides. Synthesis of the N-terminal domain (amino acids 1-272) of HpPex5p in pex5 cells restored AO import, whereas other PTS1 proteins were mislocalized to the cytosol. These data indicate that AO is imported via a novel HpPex5p-dependent protein translocation pathway, which does not require the PTS1 of AO and the C-terminal TPR domains of HpPex5p, but involves FAD binding and the N-terminus of HpPex5p

    A data-driven functional projection approach for the selection of feature ranges in spectra with ICA or cluster analysis

    Get PDF
    Prediction problems from spectra are largely encountered in chemometry. In addition to accurate predictions, it is often needed to extract information about which wavelengths in the spectra contribute in an effective way to the quality of the prediction. This implies to select wavelengths (or wavelength intervals), a problem associated to variable selection. In this paper, it is shown how this problem may be tackled in the specific case of smooth (for example infrared) spectra. The functional character of the spectra (their smoothness) is taken into account through a functional variable projection procedure. Contrarily to standard approaches, the projection is performed on a basis that is driven by the spectra themselves, in order to best fit their characteristics. The methodology is illustrated by two examples of functional projection, using Independent Component Analysis and functional variable clustering, respectively. The performances on two standard infrared spectra benchmarks are illustrated.Comment: A paraitr

    Development of a multiplex DNA-based traceability tool for crop plant materials

    Get PDF
    The authenticity of food is of increasing importance for producers, retailers and consumers. All groups benefit from the correct labelling of the contents of food products. Producers and retailers want to guarantee the origin of their products and check for adulteration with cheaper or inferior ingredients. Consumers are also more demanding about the origin of their food for various socioeconomic reasons. In contrast to this increasing demand, correct labelling has become much more complex because of global transportation networks of raw materials and processed food products. Within the European integrated research project ‘Tracing the origin of food’ (TRACE), a DNA-based multiplex detection tool was developed—the padlock probe ligation and microarray detection (PPLMD) tool. In this paper, this method is extended to a 15-plex traceability tool with a focus on products of commercial importance such as the emmer wheat Farro della Garfagnana (FdG) and Basmati rice. The specificity of 14 plant-related padlock probes was determined and initially validated in mixtures comprising seven or nine plant species/varieties. One nucleotide difference in target sequence was sufficient for the distinction between the presence or absence of a specific target. At least 5% FdG or Basmati rice was detected in mixtures with cheaper bread wheat or non-fragrant rice, respectively. The results suggested that even lower levels of (un-)intentional adulteration could be detected. PPLMD has been shown to be a useful tool for the detection of fraudulent/intentional admixtures in premium foods and is ready for the monitoring of correct labelling of premium foods worldwide

    The nitrogen, carbon and greenhouse gas budget of a grazed, cut and fertilised temperate grassland

    Get PDF
    Intensively managed grazed grasslands in temperate climates are globally important environments for the exchange of the greenhouse gases (GHGs) carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). We assessed the N and C budget of a mostly grazed and occasionally cut and fertilised grassland in SE Scotland by measuring or modelling all relevant imports and exports to the field as well as changes in soil C and N stocks over time. The N budget was dominated by import from inorganic and organic fertilisers (21.9 g N m−2 a−1) and losses from leaching (5.3 g N m−2 a−1), N2 emissions (2.9 g N m−2 a−1), and NOx and NH3 volatilisation (3.9 g N m−2 a−1), while N2O emission was only 0.6 g N m−2 a−1. The efficiency of N use by animal products (meat and wool) averaged 9.9 % of total N input over only-grazed years (2004–2010). On average over 9 years (2002–2010), the balance of N fluxes suggested that 6.0 ± 5.9 g N m−2 a−1 (mean ± confidence interval at p > 0.95) were stored in the soil. The largest component of the C budget was the net ecosystem exchange of CO2 (NEE), at an average uptake rate of 218 ± 155 g C m−2 a−1 over the 9 years. This sink strength was offset by carbon export from the field mainly as grass offtake for silage (48.9 g C m−2 a−1) and leaching (16.4 g C m−2 a−1). The other export terms, CH4 emissions from the soil, manure applications and enteric fermentation, were negligible and only contributed to 0.02–4.2 % of the total C losses. Only a small fraction of C was incorporated into the body of the grazing animals. Inclusion of these C losses in the budget resulted in a C sink strength of 163 ± 140 g C m−2 a−1. By contrast, soil stock measurements taken in May 2004 and May 2011 indicated that the grassland sequestered N in the 0–60 cm soil layer at 4.51 ± 2.64 g N m−2 a−1 and lost C at a rate of 29.08 ± 38.19 g C m−2 a−1. Potential reasons for the discrepancy between these estimates are probably an underestimation of C losses, especially from leaching fluxes as well as from animal respiration. The average greenhouse gas (GHG) balance of the grassland was −366 ± 601 g CO2 eq. m−2 yr−1 and was strongly affected by CH4 and N2O emissions. The GHG sink strength of the NEE was reduced by 54 % by CH4 and N2O emissions. Estimated enteric fermentation from ruminating sheep proved to be an important CH4 source, exceeding the contribution of N2O to the GHG budget in some years

    Radiomics-based differentiation of lung disease models generated by polluted air based on X-ray computed tomography data

    Get PDF
    BACKGROUND: Lung diseases (resulting from air pollution) require a widely accessible method for risk estimation and early diagnosis to ensure proper and responsive treatment. Radiomics-based fractal dimension analysis of X-ray computed tomography attenuation patterns in chest voxels of mice exposed to different air polluting agents was performed to model early stages of disease and establish differential diagnosis. METHODS: To model different types of air pollution, BALBc/ByJ mouse groups were exposed to cigarette smoke combined with ozone, sulphur dioxide gas and a control group was established. Two weeks after exposure, the frequency distributions of image voxel attenuation data were evaluated. Specific cut-off ranges were defined to group voxels by attenuation. Cut-off ranges were binarized and their spatial pattern was associated with calculated fractal dimension, then abstracted by the fractal dimension -- cut-off range mathematical function. Nonparametric Kruskal-Wallis (KW) and Mann-Whitney post hoc (MWph) tests were used. RESULTS: Each cut-off range versus fractal dimension function plot was found to contain two distinctive Gaussian curves. The ratios of the Gaussian curve parameters are considerably significant and are statistically distinguishable within the three exposure groups. CONCLUSIONS: A new radiomics evaluation method was established based on analysis of the fractal dimension of chest X-ray computed tomography data segments. The specific attenuation patterns calculated utilizing our method may diagnose and monitor certain lung diseases, such as chronic obstructive pulmonary disease (COPD), asthma, tuberculosis or lung carcinomas

    Import and assembly of alcohol oxidase in Hansenula polymorpha.

    Get PDF
    Eukaryotic cells have evolved the ability to exercise control over various processes in the cell. This control mechanism is more advanced than that observed in prokaryotes in that eukaryotes have sequestered specific functions in different compartments, called cell organelles. Microbodies (peroxisomes, glyoxysomes, glycosomes) are a typical example of these; they constitute a class of ubiquitous organelles that function in various metabolic processes. ... Zie: Summary
    corecore