2,910 research outputs found

    Resistive AC-Coupled Silicon Detectors: principles of operation and first results from a combined analysis of beam test and laser data

    Full text link
    This paper presents the principles of operation of Resistive AC-Coupled Silicon Detectors (RSDs) and measurements of the temporal and spatial resolutions using a combined analysis of laser and beam test data. RSDs are a new type of n-in-p silicon sensor based on the Low-Gain Avalanche Diode (LGAD) technology, where the n+n^+ implant has been designed to be resistive, and the read-out is obtained via AC-coupling. The truly innovative feature of RSD is that the signal generated by an impinging particle is shared isotropically among multiple read-out pads without the need for floating electrodes or an external magnetic field. Careful tuning of the coupling oxide thickness and the n+n^+ doping profile is at the basis of the successful functioning of this device. Several RSD matrices with different pad width-pitch geometries have been extensively tested with a laser setup in the Laboratory for Innovative Silicon Sensors in Torino, while a smaller set of devices have been tested at the Fermilab Test Beam Facility with a 120 GeV/c proton beam. The measured spatial resolution ranges between 2.5  Όm2.5\; \mu m for 70-100 pad-pitch geometry and 17  Όm17\; \mu m with 200-500 matrices, a factor of 10 better than what is achievable in binary read-out (bin  size/12bin\; size/ \sqrt{12}). Beam test data show a temporal resolution of ∌40  ps\sim 40\; ps for 200-ÎŒm\mu m pitch devices, in line with the best performances of LGAD sensors at the same gain.Comment: 34 pages, 33 figure

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+→Ό+ÎœW^+ \rightarrow \mu^+\nu and W−→Ό−ΜW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for Neutral Higgs Bosons in Events with Multiple Bottom Quarks at the Tevatron

    Get PDF
    The combination of searches performed by the CDF and D0 collaborations at the Fermilab Tevatron Collider for neutral Higgs bosons produced in association with b quarks is reported. The data, corresponding to 2.6 fb-1 of integrated luminosity at CDF and 5.2 fb-1 at D0, have been collected in final states containing three or more b jets. Upper limits are set on the cross section multiplied by the branching ratio varying between 44 pb and 0.7 pb in the Higgs boson mass range 90 to 300 GeV, assuming production of a narrow scalar boson. Significant enhancements to the production of Higgs bosons can be found in theories beyond the standard model, for example in supersymmetry. The results are interpreted as upper limits in the parameter space of the minimal supersymmetric standard model in a benchmark scenario favoring this decay mode.Comment: 10 pages, 2 figure