4,410 research outputs found

    EDACs and test integration strategies for NAND flash memories

    Get PDF
    Mission-critical applications usually presents several critical issues: the required level of dependability of the whole mission always implies to address different and contrasting dimensions and to evaluate the tradeoffs among them. A mass-memory device is always needed in all mission-critical applications: NAND flash-memories could be used for this goal. Error Detection And Correction (EDAC) techniques are needed to improve dependability of flash-memory devices. However also testing strategies need to be explored in order to provide highly dependable systems. Integrating these two main aspects results in providing a fault-tolerant mass-memory device, but no systematic approach has so far been proposed to consider them as a whole. As a consequence a novel strategy integrating a particular code-based design environment with newly selected testing strategies is presented in this pape

    Software-Based Self-Test of Set-Associative Cache Memories

    Get PDF
    Embedded microprocessor cache memories suffer from limited observability and controllability creating problems during in-system tests. This paper presents a procedure to transform traditional march tests into software-based self-test programs for set-associative cache memories with LRU replacement. Among all the different cache blocks in a microprocessor, testing instruction caches represents a major challenge due to limitations in two areas: 1) test patterns which must be composed of valid instruction opcodes and 2) test result observability: the results can only be observed through the results of executed instructions. For these reasons, the proposed methodology will concentrate on the implementation of test programs for instruction caches. The main contribution of this work lies in the possibility of applying state-of-the-art memory test algorithms to embedded cache memories without introducing any hardware or performance overheads and guaranteeing the detection of typical faults arising in nanometer CMOS technologie

    Online self-repair of FIR filters

    Get PDF
    Chip-level failure detection has been a target of research for some time, but today's very deep-submicron technology is forcing such research to move beyond detection. Repair, especially self-repair, has become very important for containing the susceptibility of today's chips. This article introduces a self-repair-solution for the digital FIR filter, one of the key blocks used in DSPs

    A FPGA-Based Reconfigurable Software Architecture for Highly Dependable Systems

    Get PDF
    Nowadays, systems-on-chip are commonly equipped with reconfigurable hardware. The use of hybrid architectures based on a mixture of general purpose processors and reconfigurable components has gained importance across the scientific community allowing a significant improvement of computational performance. Along with the demand for performance, the great sensitivity of reconfigurable hardware devices to physical defects lead to the request of highly dependable and fault tolerant systems. This paper proposes an FPGA-based reconfigurable software architecture able to abstract the underlying hardware platform giving an homogeneous view of it. The abstraction mechanism is used to implement fault tolerance mechanisms with a minimum impact on the system performanc

    AFSM-based deterministic hardware TPG

    Get PDF
    This paper proposes a new approach for designing a cost-effective, on-chip, hardware pattern generator of deterministic test sequences. Given a pre-computed test pattern (obtained by an ATPG tool) with predetermined fault coverage, a hardware Test Pattern Generator (TPG) based on Autonomous Finite State Machines (AFSM) structure is synthesized to generate it. This new approach exploits "don't care" bits of the deterministic test patterns to lower area overhead of the TPG. Simulations using benchmark circuits show that the hardware components cost is considerably less when compared with alternative solution

    Static analysis of SEU effects on software applications

    Get PDF
    Control flow errors have been widely addressed in literature as a possible threat to the dependability of computer systems, and many clever techniques have been proposed to detect and tolerate them. Nevertheless, it has never been discussed if the overheads introduced by many of these techniques are justified by a reasonable probability of incurring control flow errors. This paper presents a static executable code analysis methodology able to compute, depending on the target microprocessor platform, the upper-bound probability that a given application incurs in a control flow error

    Memory read faults: taxonomy and automatic test generation

    Get PDF
    This paper presents an innovative algorithm for the automatic generation of March tests. The proposed approach is able to generate an optimal March test for an unconstrained set of memory faults in very low computation time. Moreover, we propose a new complete taxonomy for memory read faults, a class of faults never carefully addressed in the past

    A watchdog processor to detect data and control flow errors

    Get PDF
    A watchdog processor for the MOTOROLA M68040 microprocessor is presented. Its main task is to protect from transient faults caused by SEUs the transmission of data between the processor and the system memory, and to ensure a correct instructions' flow, just monitoring the external bus, without modifying the internal architecture of the M68040. A description of the principal procedures is given, together with the method used for monitoring the instructions' flow

    Automated Synthesis of SEU Tolerant Architectures from OO Descriptions

    Get PDF
    SEU faults are a well-known problem in aerospace environment but recently their relevance grew up also at ground level in commodity applications coupled, in this frame, with strong economic constraints in terms of costs reduction. On the other hand, latest hardware description languages and synthesis tools allow reducing the boundary between software and hardware domains making the high-level descriptions of hardware components very similar to software programs. Moving from these considerations, the present paper analyses the possibility of reusing Software Implemented Hardware Fault Tolerance (SIHFT) techniques, typically exploited in micro-processor based systems, to design SEU tolerant architectures. The main characteristics of SIHFT techniques have been examined as well as how they have to be modified to be compatible with the synthesis flow. A complete environment is provided to automate the design instrumentation using the proposed techniques, and to perform fault injection experiments both at behavioural and gate level. Preliminary results presented in this paper show the effectiveness of the approach in terms of reliability improvement and reduced design effort

    Validation of a software dependability tool via fault injection experiments

    Get PDF
    Presents the validation of the strategies employed in the RECCO tool to analyze a C/C++ software; the RECCO compiler scans C/C++ source code to extract information about the significance of the variables that populate the program and the code structure itself. Experimental results gathered on an Open Source Router are used to compare and correlate two sets of critical variables, one obtained by fault injection experiments, and the other applying the RECCO tool, respectively. Then the two sets are analyzed, compared, and correlated to prove the effectiveness of RECCO's methodology
    corecore