1,546 research outputs found

    Performance of b-tagging algorithms at the CMS experiment with pp collision data at s\sqrt s=8 TeV

    Full text link
    The identification of jets originating from b quarks is crucial both for the searches for new physics and for the measurement of standard model processes. The Compact Muon Solenoid (CMS) collaboration at the Large Hadron Collider (LHC) has developed a variety of algorithms to select b-quark jets based on variables such as the impact parameter of charged particle tracks, properties of reconstructed secondary vertices from heavy hadron decays, and the presence or absence of a lepton in the jet, or combinations thereof. Performance measurements of these b-jet identification algorithms are presented, using multijet and tt‚Äĺt\overline{t} events recorded in proton-proton collision data at s\sqrt s=8 TeV with the CMS detector during the LHC Run 1

    Ablation of Materials Using Femtosecond Lasers and Electron Beams

    Get PDF
    The advancements in producing interactions of concentrated energy fluxes, such as femtosecond lasers and high-energy electron beams with the absorbing substances, have facilitated new discoveries and excitement in various scientific and technological areas. Since their invention, significant improvements in temporal, spatial, energetic, and spectroscopic characteristics have been realized. Due to the ultrashort pulse width and higher intensity (1012 W/cm2), it is possible to ablate the materials with negligible damage outside the focal volume, thereby allowing the treatment of biological samples, such as live cells, membranes, and removal of thin films, as well as bulk materials for many applications in diverse fields, including micro-optics, electronics, and even biology under extremely high precision. Since most biological systems are transparent toward the NIR spectral range, it follows the nonlinear multi-photon absorption interaction mechanism. In contrast, the electron beam follows linear absorption mechanism for material modifications even at lower energies. For realizing the fs-laser nano-processing in material applications, such as silicon microchips, or in biology like retinal cells, it is crucial to find a way to deliver these pulses precisely at the site of action and enhance the selectivity. The utilization of electron beams in material modification has also been exercised widely to attain nanoscale precision. In the next section, biological materials, such as cornea, retina, and silk, are discussed

    Differential cross section measurements for the production of a W boson in association with jets in proton‚Äďproton collisions at ‚ąös = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript ‚ąí1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Juxtaposing BTE and ATE ‚Äď on the role of the European insurance industry in funding civil litigation