316 research outputs found

    Inhibition of TGF-β Signaling Promotes Human Pancreatic β-Cell Replication.

    Get PDF
    Diabetes is associated with loss of functional pancreatic β-cells, and restoration of β-cells is a major goal for regenerative therapies. Endogenous regeneration of β-cells via β-cell replication has the potential to restore cellular mass; however, pharmacological agents that promote regeneration or expansion of endogenous β-cells have been elusive. The regenerative capacity of β-cells declines rapidly with age, due to accumulation of p16(INK4a), resulting in limited capacity for adult endocrine pancreas regeneration. Here, we show that transforming growth factor-β (TGF-β) signaling via Smad3 integrates with the trithorax complex to activate and maintain Ink4a expression to prevent β-cell replication. Importantly, inhibition of TGF-β signaling can result in repression of the Ink4a/Arf locus, resulting in increased β-cell replication in adult mice. Furthermore, small molecule inhibitors of the TGF-β pathway promote β-cell replication in human islets transplanted into NOD-scid IL-2Rg(null) mice. These data reveal a novel role for TGF-β signaling in the regulation of the Ink4a/Arf locus and highlight the potential of using small molecule inhibitors of TGF-β signaling to promote human β-cell replication

    Age-dependent decline in beta-cell proliferation restricts the capacity of beta-cell regeneration in mice.

    Get PDF
    ObjectiveThe aim of this study was to elucidate whether age plays a role in the expansion or regeneration of beta-cell mass.Research design and methodsWe analyzed the capacity of beta-cell expansion in 1.5- and 8-month-old mice in response to a high-fat diet, after short-term treatment with the glucagon-like peptide 1 (GLP-1) analog exendin-4, or after streptozotocin (STZ) administration.ResultsYoung mice responded to high-fat diet by increasing beta-cell mass and beta-cell proliferation and maintaining normoglycemia. Old mice, by contrast, did not display any increases in beta-cell mass or beta-cell proliferation in response to high-fat diet and became diabetic. To further assess the plasticity of beta-cell mass with respect to age, young and old mice were injected with a single dose of STZ, and beta-cell proliferation was analyzed to assess the regeneration of beta-cells. We observed a fourfold increase in beta-cell proliferation in young mice after STZ administration, whereas no changes in beta-cell proliferation were observed in older mice. The capacity to expand beta-cell mass in response to short-term treatment with the GLP-1 analog exendin-4 also declined with age. The ability of beta-cell mass to expand was correlated with higher levels of Bmi1, a polycomb group protein that is known to regulate the Ink4a locus, and decreased levels of p16(Ink4a)expression in the beta-cells. Young Bmi1(-/-) mice that prematurely upregulate p16(Ink4a)failed to expand beta-cell mass in response to exendin-4, indicating that p16(Ink4a)levels are a critical determinant of beta-cell mass expansion.Conclusionsbeta-Cell proliferation and the capacity of beta-cells to regenerate declines with age and is regulated by the Bmi1/p16(Ink4a)pathway

    Effect of Ni ion irradiation on microstructure and corrosion properties of Zr59Nb3Cu20Al10Ni8 amorphous alloy

    Get PDF
    The amorphous Zr59Nb3Cu20Al10Ni8 alloy has been irradiated by 100 MeV Ni+7 ion beam at the fluence rates of 1×1013 and 1×1014 ions/cm2 at room and elevated temperature. The effect of irradiation on structure sensitive properties of Zr-based amorphous alloys has been investigated in this study using XRD and FESEM and potentiodynamic polarization study. The results reveals that there are no significant changes in the microstructure at lower fluence rate but the formation of nanocrystalline structures have been observed at the higher fluence rates and the results have been corroborated using corrosion studies

    Cyclin D2 is sufficient to drive β cell self-renewal and regeneration

    Get PDF
    Diabetes results from an inadequate mass of functional β cells, due to either β cell loss caused by autoimmune destruction (type I diabetes) or β cell failure in response to insulin resistance (type II diabetes). Elucidating the mechanisms that regulate β cell mass may be key to developing new techniques that foster β cell regeneration as a cellular therapy to treat diabetes. While previous studies concluded that cyclin D2 is required for postnatal β cell self-renewal in mice, it is not clear if cyclin D2 is sufficient to drive β cell self-renewal. Using transgenic mice that overexpress cyclin D2 specifically in β cells, we show that cyclin D2 overexpression increases β cell self-renewal post-weaning and results in increased β cell mass. β cells that overexpress cyclin D2 are responsive to glucose stimulation, suggesting they are functionally mature. β cells that overexpress cyclin D2 demonstrate an enhanced regenerative capacity after injury induced by streptozotocin toxicity. To understand if cyclin D2 overexpression is sufficient to drive β cell self-renewal, we generated a novel mouse model where cyclin D2 is only expressed in β cells of cyclin D2−/− mice. Transgenic overexpression of cyclin D2 in cyclin D2−/− β cells was sufficient to restore β cell mass, maintain normoglycaemia, and improve regenerative capacity when compared with cyclin D2−/− littermates. Taken together, our results indicate that cyclin D2 is sufficient to regulate β cell self-renewal and that manipulation of its expression could be used to enhance β cell regeneration