87 research outputs found

    Draft Auctions

    Full text link
    We introduce draft auctions, which is a sequential auction format where at each iteration players bid for the right to buy items at a fixed price. We show that draft auctions offer an exponential improvement in social welfare at equilibrium over sequential item auctions where predetermined items are auctioned at each time step. Specifically, we show that for any subadditive valuation the social welfare at equilibrium is an O(log⁑2(m))O(\log^2(m))-approximation to the optimal social welfare, where mm is the number of items. We also provide tighter approximation results for several subclasses. Our welfare guarantees hold for Bayes-Nash equilibria and for no-regret learning outcomes, via the smooth-mechanism framework. Of independent interest, our techniques show that in a combinatorial auction setting, efficiency guarantees of a mechanism via smoothness for a very restricted class of cardinality valuations, extend with a small degradation, to subadditive valuations, the largest complement-free class of valuations. Variants of draft auctions have been used in practice and have been experimentally shown to outperform other auctions. Our results provide a theoretical justification

    Envy Freedom and Prior-free Mechanism Design

    Full text link
    We consider the provision of an abstract service to single-dimensional agents. Our model includes position auctions, single-minded combinatorial auctions, and constrained matching markets. When the agents' values are drawn from a distribution, the Bayesian optimal mechanism is given by Myerson (1981) as a virtual-surplus optimizer. We develop a framework for prior-free mechanism design and analysis. A good mechanism in our framework approximates the optimal mechanism for the distribution if there is a distribution; moreover, when there is no distribution this mechanism still performs well. We define and characterize optimal envy-free outcomes in symmetric single-dimensional environments. Our characterization mirrors Myerson's theory. Furthermore, unlike in mechanism design where there is no point-wise optimal mechanism, there is always a point-wise optimal envy-free outcome. Envy-free outcomes and incentive-compatible mechanisms are similar in structure and performance. We therefore use the optimal envy-free revenue as a benchmark for measuring the performance of a prior-free mechanism. A good mechanism is one that approximates the envy free benchmark on any profile of agent values. We show that good mechanisms exist, and in particular, a natural generalization of the random sampling auction of Goldberg et al. (2001) is a constant approximation

    The Sample Complexity of Auctions with Side Information

    Full text link
    Traditionally, the Bayesian optimal auction design problem has been considered either when the bidder values are i.i.d, or when each bidder is individually identifiable via her value distribution. The latter is a reasonable approach when the bidders can be classified into a few categories, but there are many instances where the classification of bidders is a continuum. For example, the classification of the bidders may be based on their annual income, their propensity to buy an item based on past behavior, or in the case of ad auctions, the click through rate of their ads. We introduce an alternate model that captures this aspect, where bidders are a priori identical, but can be distinguished based (only) on some side information the auctioneer obtains at the time of the auction. We extend the sample complexity approach of Dhangwatnotai et al. and Cole and Roughgarden to this model and obtain almost matching upper and lower bounds. As an aside, we obtain a revenue monotonicity lemma which may be of independent interest. We also show how to use Empirical Risk Minimization techniques to improve the sample complexity bound of Cole and Roughgarden for the non-identical but independent value distribution case.Comment: A version of this paper appeared in STOC 201

    Optimal Multi-Unit Mechanisms with Private Demands

    Full text link
    In the multi-unit pricing problem, multiple units of a single item are for sale. A buyer's valuation for nn units of the item is vmin⁑{n,d}v \min \{ n, d\} , where the per unit valuation vv and the capacity dd are private information of the buyer. We consider this problem in the Bayesian setting, where the pair (v,d)(v,d) is drawn jointly from a given probability distribution. In the \emph{unlimited supply} setting, the optimal (revenue maximizing) mechanism is a pricing problem, i.e., it is a menu of lotteries. In this paper we show that under a natural regularity condition on the probability distributions, which we call \emph{decreasing marginal revenue}, the optimal pricing is in fact \emph{deterministic}. It is a price curve, offering ii units of the item for a price of pip_i, for every integer ii. Further, we show that the revenue as a function of the prices pip_i is a \emph{concave} function, which implies that the optimum price curve can be found in polynomial time. This gives a rare example of a natural multi-parameter setting where we can show such a clean characterization of the optimal mechanism. We also give a more detailed characterization of the optimal prices for the case where there are only two possible demands

    Fast Algorithms for Online Stochastic Convex Programming

    Full text link
    We introduce the online stochastic Convex Programming (CP) problem, a very general version of stochastic online problems which allows arbitrary concave objectives and convex feasibility constraints. Many well-studied problems like online stochastic packing and covering, online stochastic matching with concave returns, etc. form a special case of online stochastic CP. We present fast algorithms for these problems, which achieve near-optimal regret guarantees for both the i.i.d. and the random permutation models of stochastic inputs. When applied to the special case online packing, our ideas yield a simpler and faster primal-dual algorithm for this well studied problem, which achieves the optimal competitive ratio. Our techniques make explicit the connection of primal-dual paradigm and online learning to online stochastic CP.Comment: To appear in SODA 201
    • …