51 research outputs found

    Kids' Outcomes And Long-term Abilities (KOALA): protocol for a prospective, longitudinal cohort study of mild traumatic brain injury in children 6 months to 6 years of age

    Get PDF
    Introduction: Mild traumatic brain injury (mTBI) is highly prevalent, especially in children under 6 years. However, little research focuses on the consequences of mTBI early in development. The objective of the Kids' Outcomes And Long-term Abilities (KOALA) study is to document the impact of early mTBI on children's motor, cognitive, social and behavioural functioning, as well as on quality of life, stress, sleep and brain integrity. Methods and analyses KOALA is a prospective, multicentre, longitudinal cohort study of children aged 6 months to 6 years at the time of injury/recruitment. Children who sustain mTBI (n=150) or an orthopaedic injury (n=75) will be recruited from three paediatric emergency departments (PEDs), and compared with typically developing children (community controls, n=75). A comprehensive battery of prognostic and outcome measures will be collected in the PED, at 10 days, 1, 3 and 12 months postinjury. Biological measures, including measures of brain structure and function (magnetic resonance imaging, MRI), stress (hair cortisol), sleep (actigraphy) and genetics (saliva), will complement direct testing of function using developmental and neuropsychological measures and parent questionnaires. Group comparisons and predictive models will test the a priori hypotheses that, compared with children from the community or with orthopaedic injuries, children with mTBI will (1) display more postconcussive symptoms and exhibit poorer motor, cognitive, social and behavioural functioning;(2) show evidence of altered brain structure and function, poorer sleep and higher levels of stress hormones. A combination of child, injury, socioenvironmental and psychobiological factors are expected to predict behaviour and quality of life at 1, 3 and 12 months postinjury. Ethics and dissemination The KOALA study is approved by the Sainte-Justine University Hospital, McGill University Health Centre and University of Calgary Conjoint Health Research Ethics Boards. Parents of participants will provide written consent. Dissemination will occur through peer-reviewed journals and an integrated knowledge translation plan

    The ANTENATAL multicentre study to predict postnatal renal outcome in fetuses with posterior urethral valves: objectives and design

    Get PDF
    Abstract Background Posterior urethral valves (PUV) account for 17% of paediatric end-stage renal disease. A major issue in the management of PUV is prenatal prediction of postnatal renal function. Fetal ultrasound and fetal urine biochemistry are currently employed for this prediction, but clearly lack precision. We previously developed a fetal urine peptide signature that predicted in utero with high precision postnatal renal function in fetuses with PUV. We describe here the objectives and design of the prospective international multicentre ANTENATAL (multicentre validation of a fetal urine peptidome-based classifier to predict postnatal renal function in posterior urethral valves) study, set up to validate this fetal urine peptide signature. Methods Participants will be PUV pregnancies enrolled from 2017 to 2021 and followed up until 2023 in >30 European centres endorsed and supported by European reference networks for rare urological disorders (ERN eUROGEN) and rare kidney diseases (ERN ERKNet). The endpoint will be renal/patient survival at 2 years postnatally. Assuming α = 0.05, 1–β = 0.8 and a mean prevalence of severe renal outcome in PUV individuals of 0.35, 400 patients need to be enrolled to validate the previously reported sensitivity and specificity of the peptide signature. Results In this largest multicentre study of antenatally detected PUV, we anticipate bringing a novel tool to the clinic. Based on urinary peptides and potentially amended in the future with additional omics traits, this tool will be able to precisely quantify postnatal renal survival in PUV pregnancies. The main limitation of the employed approach is the need for specialized equipment. Conclusions Accurate risk assessment in the prenatal period should strongly improve the management of fetuses with PUV

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Molecular Determinants of Pentamidine-Induced hERG Trafficking Inhibition

    No full text

    Phosphorylation at Connexin43 Serine-368 Is Necessary for Myocardial Conduction During Metabolic Stress

    No full text
    Connexin43 (Cx43) phosphorylation alters gap junction localization and function. In particular, phosphorylation at serine-368 (S368) has been suggested to alter gap junctional conductance, but previous reports have shown inconsistent results for both timing and functional effects of S368 phosphorylation. The objective of this study was to determine the functional effects of isolated S368 phosphorylation. We evaluated wild-type Cx43 (AdCx43) and mutations simulating permanent phosphorylation (Ad368E) or preventing phosphorylation (Ad368A) at S368. Function was assessed by optical mapping of electrical conduction in patterned cultures of neonatal rat ventricular myocytes, under baseline and metabolic stress (MS) conditions. Baseline conduction velocity (CV) was similar for all groups. In the AdCx43 and Ad368E groups, MS moderately decreased CV. Ad368A caused complete conduction block during MS. Triton-X solubility assessment showed no change in Cx43 location during conduction impairment. Western blot analysis showed that Cx43-S368 phosphorylation was present at baseline, and that it decreased during MS. Our data indicate that phosphorylation at S368 does not affect CV under baseline conditions, and that preventing S368 phosphorylation makes Cx43 hypersensitive to MS. These results show the critical role of S368 phosphorylation during stress conditions