211 research outputs found

    AI Technical Considerations:Data Storage, Cloud usage and AI Pipeline

    Get PDF
    Artificial intelligence (AI), especially deep learning, requires vast amounts of data for training, testing, and validation. Collecting these data and the corresponding annotations requires the implementation of imaging biobanks that provide access to these data in a standardized way. This requires careful design and implementation based on the current standards and guidelines and complying with the current legal restrictions. However, the realization of proper imaging data collections is not sufficient to train, validate and deploy AI as resource demands are high and require a careful hybrid implementation of AI pipelines both on-premise and in the cloud. This chapter aims to help the reader when technical considerations have to be made about the AI environment by providing a technical background of different concepts and implementation aspects involved in data storage, cloud usage, and AI pipelines

    ASTRO Journals' Data Sharing Policy and Recommended Best Practices.

    Get PDF
    Transparency, openness, and reproducibility are important characteristics in scientific publishing. Although many researchers embrace these characteristics, data sharing has yet to become common practice. Nevertheless, data sharing is becoming an increasingly important topic among societies, publishers, researchers, patient advocates, and funders, especially as it pertains to data from clinical trials. In response, ASTRO developed a data policy and guide to best practices for authors submitting to its journals. ASTRO's data sharing policy is that authors should indicate, in data availability statements, if the data are being shared and if so, how the data may be accessed

    Mind your data:Privacy and legal matters in eHealth

    Get PDF
    The health care sector can benefit considerably from developments in digital technology. Consequently, eHealth applications are rapidly increasing in number and sophistication. For successful development and implementation of eHealth, it is paramount to guarantee the privacy and safety of patients and their collected data. At the same time, anonymized data that are collected through eHealth could be used in the development of innovative and personalized diagnostic, prognostic, and treatment tools. To address the needs of researchers, health care providers, and eHealth developers for more information and practical tools to handle privacy and legal matters in eHealth, the Dutch national Digital Society Research Programme organized the "Mind Your Data: Privacy and Legal Matters in eHealth" conference. In this paper, we share the key take home messages from the conference based on the following five tradeoffs: (1) privacy versus independence, (2) informed consent versus convenience, (3) clinical research versus clinical routine data, (4) responsibility and standardization, and (5) privacy versus solidarity

    Distributed learning: Developing a predictive model based on data from multiple hospitals without data leaving the hospital – A real life proof of concept

    Get PDF
    AbstractPurposeOne of the major hurdles in enabling personalized medicine is obtaining sufficient patient data to feed into predictive models. Combining data originating from multiple hospitals is difficult because of ethical, legal, political, and administrative barriers associated with data sharing. In order to avoid these issues, a distributed learning approach can be used. Distributed learning is defined as learning from data without the data leaving the hospital.Patients and methodsClinical data from 287 lung cancer patients, treated with curative intent with chemoradiation (CRT) or radiotherapy (RT) alone were collected from and stored in 5 different medical institutes (123 patients at MAASTRO (Netherlands, Dutch), 24 at Jessa (Belgium, Dutch), 34 at Liege (Belgium, Dutch and French), 48 at Aachen (Germany, German) and 58 at Eindhoven (Netherlands, Dutch)).A Bayesian network model is adapted for distributed learning (watch the animation: http://youtu.be/nQpqMIuHyOk). The model predicts dyspnea, which is a common side effect after radiotherapy treatment of lung cancer.ResultsWe show that it is possible to use the distributed learning approach to train a Bayesian network model on patient data originating from multiple hospitals without these data leaving the individual hospital. The AUC of the model is 0.61 (95%CI, 0.51–0.70) on a 5-fold cross-validation and ranges from 0.59 to 0.71 on external validation sets.ConclusionDistributed learning can allow the learning of predictive models on data originating from multiple hospitals while avoiding many of the data sharing barriers. Furthermore, the distributed learning approach can be used to extract and employ knowledge from routine patient data from multiple hospitals while being compliant to the various national and European privacy laws

    Laser frequency comb techniques for precise astronomical spectroscopy

    Full text link
    Precise astronomical spectroscopic analyses routinely assume that individual pixels in charge-coupled devices (CCDs) have uniform sensitivity to photons. Intra-pixel sensitivity (IPS) variations may already cause small systematic errors in, for example, studies of extra-solar planets via stellar radial velocities and cosmological variability in fundamental constants via quasar spectroscopy, but future experiments requiring velocity precisions approaching ~1 cm/s will be more strongly affected. Laser frequency combs have been shown to provide highly precise wavelength calibration for astronomical spectrographs, but here we show that they can also be used to measure IPS variations in astronomical CCDs in situ. We successfully tested a laser frequency comb system on the Ultra-High Resolution Facility spectrograph at the Anglo-Australian Telescope. By modelling the 2-dimensional comb signal recorded in a single CCD exposure, we find that the average IPS deviates by <8 per cent if it is assumed to vary symmetrically about the pixel centre. We also demonstrate that series of comb exposures with absolutely known offsets between them can yield tighter constraints on symmetric IPS variations from ~100 pixels. We discuss measurement of asymmetric IPS variations and absolute wavelength calibration of astronomical spectrographs and CCDs using frequency combs.Comment: 11 pages, 7 figures. Accepted for publication in MNRA

    Applying federated learning to combat food fraud in food supply chains

    Get PDF
    Ensuring safe and healthy food is a big challenge due to the complexity of food supply chains and their vulnerability to many internal and external factors, including food fraud. Recent research has shown that Artificial Intelligence (AI) based algorithms, in particularly data driven Bayesian Network (BN) models, are very suitable as a tool to predict future food fraud and hence allowing food producers to take proper actions to avoid that such problems occur. Such models become even more powerful when data can be used from all actors in the supply chain, but data sharing is hampered by different interests, data security and data privacy. Federated learning (FL) may circumvent these issues as demonstrated in various areas of the life sciences. In this research, we demonstrate the potential of the FL technology for food fraud using a data driven BN, integrating data from different data owners without the data leaving the database of the data owners. To this end, a framework was constructed consisting of three geographically different data stations hosting different datasets on food fraud. Using this framework, a BN algorithm was implemented that was trained on the data of different data stations while the data remained at its physical location abiding by privacy principles. We demonstrated the applicability of the federated BN in food fraud and anticipate that such framework may support stakeholders in the food supply chain for better decision-making regarding food fraud control while still preserving the privacy and confidentiality nature of these data

    A semiautomatic CT-based ensemble segmentation of lung tumors: Comparison with oncologists’ delineations and with the surgical specimen

    Get PDF
    AbstractPurposeTo assess the clinical relevance of a semiautomatic CT-based ensemble segmentation method, by comparing it to pathology and to CT/PET manual delineations by five independent radiation oncologists in non-small cell lung cancer (NSCLC).Materials and methodsFor 20 NSCLC patients (stages Ib–IIIb) the primary tumor was delineated manually on CT/PET scans by five independent radiation oncologists and segmented using a CT based semi-automatic tool. Tumor volume and overlap fractions between manual and semiautomatic-segmented volumes were compared. All measurements were correlated with the maximal diameter on macroscopic examination of the surgical specimen. Imaging data are available on www.cancerdata.org.ResultsHigh overlap fractions were observed between the semi-automatically segmented volumes and the intersection (92.5±9.0, mean±SD) and union (94.2±6.8) of the manual delineations. No statistically significant differences in tumor volume were observed between the semiautomatic segmentation (71.4±83.2cm3, mean±SD) and manual delineations (81.9±94.1cm3; p=0.57). The maximal tumor diameter of the semiautomatic-segmented tumor correlated strongly with the macroscopic diameter of the primary tumor (r=0.96).ConclusionsSemiautomatic segmentation of the primary tumor on CT demonstrated high agreement with CT/PET manual delineations and strongly correlated with the macroscopic diameter considered as the “gold standard”. This method may be used routinely in clinical practice and could be employed as a starting point for treatment planning, target definition in multi-center clinical trials or for high throughput data mining research. This method is particularly suitable for peripherally located tumors
    • …