170 research outputs found

    The influence of anesthesia and fluid-structure interaction on simulated shear stress patterns in the carotid bifurcation of mice

    Get PDF
    Background: Low and oscillatory wall shear stresses (WSS) near aortic bifurcations have been linked to the onset of atherosclerosis. In previous work, we calculated detailed WSS patterns in the carotid bifurcation of mice using a Fluid-structure interaction (FSI) approach. We subsequently fed the animals a high-fat diet and linked the results of the FSI simulations to those of atherosclerotic plaque location on a within-subject basis. However, these simulations were based on boundary conditions measured under anesthesia, while active mice might experience different hemodynamics. Moreover, the FSI technique for mouse-specific simulations is both time- and labor-intensive, and might be replaced by simpler and easier Computational Fluid Dynamics (CFD) simulations. The goal of the current work was (i) to compare WSS patterns based on anesthesia conditions to those representing active resting and exercising conditions; and (ii) to compare WSS patterns based on FSI simulations to those based on steady-state and transient CFD simulations. Methods: For each of the 3 computational techniques (steady state CFD, transient CFD, FSI) we performed 5 simulations: 1 for anesthesia, 2 for conscious resting conditions and 2 more for conscious active conditions. The inflow, pressure and heart rate were scaled according to representative in vivo measurements obtained from literature. Results: When normalized by the maximal shear stress value, shear stress patterns were similar for the 3 computational techniques. For all activity levels, steady state CFD led to an overestimation of WSS values, while FSI simulations yielded a clear increase in WSS reversal at the outer side of the sinus of the external carotid artery that was not visible in transient CFD-simulations. Furthermore, the FSI simulations in the highest locomotor activity state showed a flow recirculation zone in the external carotid artery that was not present under anesthesia. This recirculation went hand in hand with locally increased WSS reversal. Conclusions: Our data show that FSI simulations are not necessary to obtain normalized WSS patterns, but indispensable to assess the oscillatory behavior of the WSS in mice. Flow recirculation and WSS reversal at the external carotid artery may occur during high locomotor activity while they are not present under anesthesia. These phenomena might thus influence plaque formation to a larger extent than what was previously assumed. (C) 2016 Elsevier Ltd. All rights reserved

    Target enrichment using parallel nanoliter quantitative PCR amplification

    Get PDF
    Background: Next generation targeted resequencing is replacing Sanger sequencing at high pace in routine genetic diagnosis. The need for well validated, high quality enrichment platforms to complement the bench-top next generation sequencing devices is high. Results: We used the WaferGen Smartchip platform to perform highly parallelized PCR based target enrichment for a set of known cancer genes in a well characterized set of cancer cell lines from the NCI60 panel. Optimization of PCR assay design and cycling conditions resulted in a high enrichment efficiency. We provide proof of a high mutation rediscovery rate and have included technical replicates to enable SNP calling validation demonstrating the high reproducibility of our enrichment platform. Conclusions: Here we present our custom developed quantitative PCR based target enrichment platform. Using highly parallel nanoliter singleplex PCR reactions makes this a flexible and efficient platform. The high mutation validation rate shows this platform’s promise as a targeted resequencing method for multi-gene routine sequencing diagnostics

    Reproduction of Crassula helmsii by seed in western Europe

    Get PDF
    The amphibious plant species Crassula helmsii is a widely established and still-spreading alien in various parts of Europe, where it is considered invasive as its dense swards stress the viability of local biota. The species was considered to exclusively reproduce through vegetative means, until ex situ germination was recorded from a single locality in Belgium. We assessed whether this seed viability holds on a wider scale, by testing 16 populations from The Netherlands, Belgium, northern France, eastern England and northern Germany in a greenhouse germination experiment. Seedlings were observed from all populations but two, and from each of the five countries. Although most fruits were lacking seeds and the inferred germination percentages were overall low, germinable seed numbers are considerable given the high density of flowering stems. An in situ test revealed seeds to make it through normal winter conditions without signs of physical damage and with retention of germinability. Our results suggest that reproduction by seed is a relatively cryptic but widespread phenomenon throughout western Europe. The persistency of seed banks requires further investigation. Nonetheless, these findings already challenge the efficacy of techniques currently applied in C. helmsii control

    Genome-wide study of the effect of blood collection tubes on the cell-free DNA methylome

    Get PDF
    The methylation pattern of cfDNA, isolated from liquid biopsies, is gaining substantial interest for diagnosis and monitoring of diseases. We have evaluated the impact of type of blood collection tube and time delay between blood draw and plasma preparation on bisulphite-based cfDNA methylation profiling. Fifteen tubes of blood were drawn from three healthy volunteer subjects (BD Vacutainer K2E EDTA spray tubes, Streck Cell-Free DNA BCT tubes, PAXgene Blood ccfDNA tubes, Roche Cell-Free DNA Collection tubes and Biomatrica LBgard blood tubes in triplicate). Samples were either immediately processed or stored at room temperature for 24 or 72 hours before plasma preparation. DNA fragment size was evaluated by capillary electrophoresis. Reduced representation bisulphite sequencing was performed on the cell-free DNA isolated from these plasma samples. We evaluated the impact of blood tube and time delay on several quality control metrics. All preservation tubes performed similar on the quality metrics that were evaluated. Furthermore, a considerable increase in cfDNA concentration and the fraction of it derived from NK cells was observed after a 72-hour time delay in EDTA tubes. The methylation pattern of cfDNA is robust and reproducible in between the different preservation tubes. EDTA tubes processed as soon as possible, preferably within 24 hours, are the most cost effective. If immediate processing is not possible, preservation tubes are valid alternatives

    The pitfalls and promise of liquid biopsies for diagnosing and treating solid tumors in children : a review

    Get PDF
    Cell-free DNA profiling using patient blood is emerging as a non-invasive complementary technique for cancer genomic characterization. Since these liquid biopsies will soon be integrated into clinical trial protocols for pediatric cancer treatment, clinicians should be informed about potential applications and advantages but also weaknesses and potential pitfalls. Small retrospective studies comparing genetic alterations detected in liquid biopsies with tumor biopsies for pediatric solid tumor types are encouraging. Molecular detection of tumor markers in cell-free DNA could be used for earlier therapy response monitoring and residual disease detection as well as enabling detection of pathognomonic and therapeutically relevant genomic alterations. Conclusion: Existing analyses of liquid biopsies from children with solid tumors increasingly suggest a potential relevance for molecular diagnostics, prognostic assessment, and therapeutic decision-making. Gaps remain in the types of tumors studied and value of detection methods applied. Here we review the current stand of liquid biopsy studies for pediatric solid tumors with a dedicated focus on cell-free DNA analysis. There is legitimate hope that integrating fully validated liquid biopsy-based innovations into the standard of care will advance patient monitoring and personalized treatment of children battling solid cancers

    Methyl-CpG-binding domain sequencing reveals a prognostic methylation signature in neuroblastoma

    Get PDF
    Accurate assessment of neuroblastoma outcome prediction remains challenging. Therefore, this study aims at establishing novel prognostic tumor DNA methylation biomarkers. In total, 396 low- and high-risk primary tumors were analyzed, of which 87 were profiled using methyl-CpG-binding domain (MBD) sequencing for differential methylation analysis between prognostic patient groups. Subsequently, methylation-specific PCR (MSP) assays were developed for 78 top-ranking differentially methylated regions and tested on two independent cohorts of 132 and 177 samples, respectively. Further, a new statistical framework was used to identify a robust set of MSP assays of which the methylation score (i.e. the percentage of methylated assays) allows accurate outcome prediction. Survival analyses were performed on the individual target level, as well as on the combined multimarker signature. As a result of the differential DNA methylation assessment by MBD sequencing, 58 of the 78 MSP assays were designed in regions previously unexplored in neuroblastoma, and 36 are located in non-promoter or non-coding regions. In total, 5 individual MSP assays (located in CCDC177, NXPH1, lnc-MRPL3-2, lnc-TREX1-1 and one on a region from chromosome 8 with no further annotation) predict event-free survival and 4 additional assays (located in SPRED3, TNFAIP2, NPM2 and CYYR1) also predict overall survival. Furthermore, a robust 58-marker methylation signature predicting overall and event-free survival was established. In conclusion, this study encompasses the largest DNA methylation biomarker study in neuroblastoma so far. We identified and independently validated several novel prognostic biomarkers, as well as a prognostic 58-marker methylation signature

    Minimally invasive classification of pediatric solid tumors using reduced representation bisulfite sequencing of cell-free DNA : a proof-of-principle study

    Get PDF
    In the clinical management of pediatric solid tumors, histological examination of tumor tissue obtained by a biopsy remains the gold standard to establish a conclusive pathological diagnosis. The DNA methylation pattern of a tumor is known to correlate with the histopathological diagnosis across cancer types and is showing promise in the diagnostic workup of tumor samples. This methylation pattern can be detected in the cell-free DNA. Here, we provide proof-of-concept of histopathologic classification of pediatric tumors using cell-free reduced representation bisulfite sequencing (cf-RRBS) from retrospectively collected plasma and cerebrospinal fluid samples. We determined the correct tumor type in 49 out of 60 (81.6%) samples starting from minute amounts (less than 10 ng) of cell-free DNA. We demonstrate that the majority of misclassifications were associated with sample quality and not with the extent of disease. Our approach has the potential to help tackle some of the remaining diagnostic challenges in pediatric oncology in a cost-effective and minimally invasive manner. Translational relevance: Obtaining a correct diagnosis in pediatric oncology can be challenging in some tumor types, especially in renal tumors or central nervous system tumors. Furthermore, the diagnostic odyssey can result in anxiety and discomfort for these children. By applying a novel technique, reduced representation bisulfite sequencing on cell-free DNA (cf-RRBS), we show the feasibility of obtaining the histopathological diagnosis with a minimally invasive test on either plasma or cerebrospinal fluid. Furthermore, we were able to derive the copy number profile or tumor subtype from the same assay. Given that primary tumor material might be difficult to obtain, in particular in critically ill children or depending on the tumor location, and might be limited in terms of quantity or quality, our assay could become complementary to the classical tissue biopsy in difficult cases
    • …