369 research outputs found

    Probing displaced top quark signature at the LHC Run 3

    Full text link
    In the context of prospective studies for searches of new physics at the LHC Run 3, this paper investigates the relevance of using top quarks produced from new long-lived particles, and detected in the tracker volume of the ATLAS and CMS experiments. Such a signature, referred to as displaced top quarks, leads to final states containing displaced vertices and a high multiplicity of displaced jets and tracks, thanks to the top quark decays. Therefore, it is a possible powerful tool for searching for new long-lived particles. Three simplified models based on supersymmetry are explicitly designed for the study of this signature. They differ according to the nature of the long-lived heavy particle which produces at least one top quark: electrically neutral or charged, coloured or non-coloured long-lived particle. For each model, a wide region of parameter space, consistent with a reasonable number of displaced top quarks decaying in a typical tracker volume has been probed. From this study, promising benchmarks are defined and experimental guidelines are suggested.Comment: 24 pages, 48 figure

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV