14,934 research outputs found

    Polarization correlated photons from a positively charged quantum dot

    Get PDF
    Polarized cross-correlation spectroscopy on a quantum dot charged with a single hole shows the sequential emission of photons with common circular polarization. This effect is visible without magnetic field, but becomes more pronounced as the field along the quantization axis is increased. We interpret the data in terms of electron dephasing in the X+ state caused by the Overhauser field of nuclei in the dot. We predict the correlation timescale can be increased by accelerating the emission rate with cavity-QED

    Charge and spin state readout of a double quantum dot coupled to a resonator

    Full text link
    State readout is a key requirement for a quantum computer. For semiconductor-based qubit devices it is usually accomplished using a separate mesoscopic electrometer. Here we demonstrate a simple detection scheme in which a radio-frequency resonant circuit coupled to a semiconductor double quantum dot is used to probe its charge and spin states. These results demonstrate a new non-invasive technique for measuring charge and spin states in quantum dot systems without requiring a separate mesoscopic detector

    Observation of the Purcell effect in high-index-contrast micropillar

    Full text link
    We have fabricated pillar microcavity samples with Bragg mirrors consisting of alternate layers of GaAs and Aluminium Oxide. Compared to the more widely studied GaAs/AlAs micropillars these mirrors can achieve higher reflectivities with fewer layer repeats and reduce the mode volume. We have studied a number of samples containing a low density of InGaAs/GaAs self assembled quantum dots in a cavity and here report observation of a three fold enhancement in the radiative lifetime of a quantum dot exciton state due to the Purcell effect

    Oxide-apertured microcavity single-photon emitting diode

    Full text link
    We have developed a microcavity single-photon source based on a single quantum dot within a planar cavity in which wet-oxidation of a high-aluminium content layer provides lateral confinement of both the photonic mode and the injection current. Lateral confinement of the optical mode in optically pumped structures produces a strong enhancement of the radiative decay rate. Using microcavity structures with doped contact layers, we demonstrate a single-photon emitting diode where current may be injected into a single dot

    Sensitivity of the magnetic state of a spin lattice on itinerant electron orbital phase

    Full text link
    Spatially extended localized spins can interact via indirect exchange interaction through Friedel oscillations in the Fermi sea. In arrays of localized spins such interaction can lead to a magnetically ordered phase. Without external magnetic field such a phase is well understood via a "two-impurity" Kondo model. Here we employ non-equilibrium transport spectroscopy to investigate the role of the orbital phase of conduction electrons on the magnetic state of a spin lattice. We show experimentally, that even tiniest perpendicular magnetic field can influence the magnitude of the inter-spin magnetic exchange.Comment: To be published in PhysicaE EP2DS proceedin
    • ÔÇŽ