90 research outputs found

    'Paradyse Erthly': John Ball and the medieval dream-vision

    Get PDF

    Reading material bibliography and digital editions: the case of the Early English Text Society

    Get PDF

    Introduction: Authorship

    Get PDF
    Welcome to the first issue of the open-access online journal Authorship

    Signatures of Nucleon Disappearance in Large Underground Detectors

    Full text link
    For neutrons bound inside nuclei, baryon instability can manifest itself as a decay into undetectable particles (e.g., n‚ÜíőĹőĹőĹňČ\it n \to \nu \nu \bar{\nu} ), i.e., as a disappearance of a neutron from its nuclear state. If electric charge is conserved, a similar disappearance is impossible for a proton. The existing experimental lifetime limit for neutron disappearance is 4-7 orders of magnitude lower than the lifetime limits with detectable nucleon decay products in the final state [PDG2000]. In this paper we calculated the spectrum of nuclear de-excitations that would result from the disappearance of a neutron or two neutrons from 12^{12}C. We found that some de-excitation modes have signatures that are advantageous for detection in the modern high-mass, low-background, and low-threshold underground detectors, where neutron disappearance would result in a characteristic sequence of time- and space-correlated events. Thus, in the KamLAND detector [Kamland], a time-correlated triple coincidence of a prompt signal, a captured neutron, and a ő≤+\beta^{+} decay of the residual nucleus, all originating from the same point in the detector, will be a unique signal of neutron disappearance allowing searches for baryon instability with sensitivity 3-4 orders of magnitude beyond the present experimental limits.Comment: 13 pages including 6 figures, revised version, to be published in Phys.Rev.

    The Problem of Colliding Networks and its Relation to Cancer

    Get PDF
    Complex systems, ranging from living cells to human societies, can be represented as attractor networks, whose basic property is to exist in one of allowed states, or attractors. We noted that merging two systems that are in distinct attractors creates uncertainty, as the hybrid system cannot assume two attractors at once. As a prototype of this problem, we explore cell fusion, whose ability to combine distinct cells into hybrids was proposed to cause cancer. By simulating cell types as attractors, we find that hybrids are prone to assume spurious attractors, which are emergent and sporadic states of networks, and propose that cell fusion can make a cell cancerous by placing it into normally inaccessible spurious states. We define basic features of hybrid networks and suggest that the problem of colliding networks has general significance in processes represented by attractor networks, including biological, social, and political phenomena

    Search for dark matter produced in association with bottom or top quarks in ‚ąös = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb‚ąí1 of proton‚Äďproton collision data recorded by the ATLAS experiment at ‚ąös = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Determination of the strong coupling constant őĪs from transverse energy‚Äďenergy correlations in multijet events at s‚ąö=8 TeV using the ATLAS detector