97 research outputs found

    Changes in tree community structure in defaunated forests are not driven only by dispersal limitation

    Get PDF
    Bushmeat hunting has reduced population sizes of large frugivorous vertebrates throughout the tropics, thereby reducing the dispersal of seeds. This is believed to affect tree population dynamics, and therefore community composition, because the seed dispersal of large-seeded trees depends upon large-bodied vertebrates.We report on a long-running study of the effect of defaunation on a tropical tree community. In three censuses over 11 years, we compared sapling recruitment between a hunted and a nonhunted site, which are nearby and comparable to one another, to determine the extent to which species composition has changed through time following defaunation. We expected to find a reduced abundance of tree species that rely on large frugivores for dispersal at the hunted site and altered community structure as a consequence.Although community composition at the hunted site diverged from that at the nonhunted site, the changes were independent of dispersal syndrome, with no trend toward a decline in species that are dispersed by large, hunted vertebrates. Moreover, the loss of large-bodied dispersers did not generate the changes in tree community composition that we hypothesized. Some species presumed to rely on large-bodied frugivores for dispersal are effectively recruiting despite the absence of their dispersers.Synthesis: The presumption that forests depleted of large-bodied dispersers will experience rapid, directional compositional change is not fully supported by our results. Altered species composition in the sapling layer at the hunted site, however, indicates that defaunation may be connected with changes to the tree community, but that the nature of these changes is not unidirectional as previously assumed. It remains difficult to predict how defaunation will affect tree community composition without a deeper understanding of the driving mechanisms at play

    Changes in tree community structure in defaunated forests are not driven only by dispersal limitation

    Get PDF
    1. Bushmeat hunting has reduced population sizes of large frugivorous vertebrates throughout the tropics, thereby reducing the dispersal of seeds. This is believed to affect tree population dynamics, and therefore community composition, because the seed dispersal of large‚Äźseeded trees depends upon large‚Äźbodied vertebrates. 2. We report on a long‚Äźrunning study of the effect of defaunation on a tropical tree community. In three censuses over 11 years, we compared sapling recruitment between a hunted and a nonhunted site, which are nearby and comparable to one another, to determine the extent to which species composition has changed through time following defaunation. We expected to find a reduced abundance of tree species that rely on large frugivores for dispersal at the hunted site and altered community structure as a consequence. 3. Although community composition at the hunted site diverged from that at the nonhunted site, the changes were independent of dispersal syndrome, with no trend toward a decline in species that are dispersed by large, hunted vertebrates. Moreover, the loss of large‚Äźbodied dispersers did not generate the changes in tree community composition that we hypothesized. Some species presumed to rely on large‚Äźbodied frugivores for dispersal are effectively recruiting despite the absence of their dispersers. 4. Synthesis: The presumption that forests depleted of large‚Äźbodied dispersers will experience rapid, directional compositional change is not fully supported by our results. Altered species composition in the sapling layer at the hunted site, however, indicates that defaunation may be connected with changes to the tree community, but that the nature of these changes is not unidirectional as previously assumed. It remains difficult to predict how defaunation will affect tree community composition without a deeper understanding of the driving mechanisms at play

    Tree recruitment in an empty forest

    Get PDF
    To assess how the decimation of large vertebrates by hunting alters recruitment processes in a tropical forest, we compared the sapling cohorts of two structurally and compositionally similar forests in the Rio Manu floodplain in southeastern Peru. Large vertebrates were severely depleted at one site, Boca Manu (BM), whereas the other, Cocha Cashu Biological Station (CC), supported an intact fauna. At both sites we sampled small (1 m tall, ,1 cm dbh) and large (1 cm and ,10 cm dbh) saplings in the central portion of 4-ha plots within which all trees 10 cm dbh were mapped and identified. This design ensured that all conspecific adults within at least 50 m (BM) or 55 m (CC) of any sapling would have known locations. We used the Janzen-Connell model to make five predictions about the sapling cohorts at BM with respect to CC: (1) reduced overall sapling recruitment, (2) increased recruitment of species dispersed by abiotic means, (3) altered relative abundances of species, (4) prominence of large-seeded species among those showing depressed recruitment, and (5) little or no tendency for saplings to cluster closer to adults at BM. Our results affirmed each of these predictions. Interpreted at face value, the evidence suggests that few species are demographically stable at BM and that up to 28% are increasing and 72% decreasing. Loss of dispersal function allows species dispersed abiotically and by small birds and mammals to substitute for those dispersed by large birds and mammals. Although we regard these conclusions as preliminary, over the long run, the observed type of directional change in tree composition is likely to result in biodiversity loss and negative feedbacks on both the animal and plant communities. Our results suggest that the best, and perhaps only, way to prevent compositional change and probable loss of diversity in tropical tree communities is to prohibit hunting

    Identfication of viral and bacterial etiologic agents of the pertussis-like syndrome in children under 5 years old hospitalized

    Get PDF
    Background: Acute respiratory infections (ARIs) represent an important cause of morbidity and mortality in children, remaining a major public health concern, especially affecting children under 5 years old from low-income countries. Unfortunately, information regarding their epidemiology is still limited in Peru. Methods: A secondary data analysis was performed from a previous cross-sectional study conducted in children with a probable diagnosis of Pertussis from January 2010 to July 2012. All samples were analyzed via Polymerase Chain Reaction (PCR) for the following etiologies: Influenza-A, Influenza-B, RSV-A, RSV-B, Adenovirus, Parainfluenza 1 virus, Parainfluenza 2 virus, Parainfluenza 3 virus, Mycoplasma pneumoniae and Chlamydia pneumoniae. Results: A total of 288 patients were included. The most common pathogen isolated was Adenovirus (49%), followed by Bordetella pertussis (41%) from our previous investigation, the most prevelant microorganisms were Mycoplasma pneumonia (26%) and Influenza-B (19.8%). Coinfections were reported in 58% of samples and the most common association was found between B. pertussis and Adenovirus (12.2%). Conclusions: There was a high prevalence of Adenovirus, Mycoplasma pneumoniae and other etiologies in patients with a probable diagnosis of pertussis. Despite the presence of persistent cough lasting at least two weeks and other clinical characteristics highly suspicious of pertussis, secondary etiologies should be considered in children under 5 years-old in order to give a proper treatment.Revisión por pare

    Phylogenetic diversity of Amazonian tree communities

    Get PDF
    Aim: To examine variation in the phylogenetic diversity (PD) of tree communities across geographical and environmental gradients in Amazonia. Location: Two hundred and eighty-three c. 1 ha forest inventory plots from across Amazonia. Methods: We evaluated PD as the total phylogenetic branch length across species in each plot (PDss), the mean pairwise phylogenetic distance between species (MPD), the mean nearest taxon distance (MNTD) and their equivalents standardized for species richness (ses.PDss, ses.MPD, ses.MNTD). We compared PD of tree communities growing (1) on substrates of varying geological age; and (2) in environments with varying ecophysiological barriers to growth and survival. Results: PDss is strongly positively correlated with species richness (SR), whereas MNTD has a negative correlation. Communities on geologically young- and intermediate-aged substrates (western and central Amazonia respectively) have the highest SR, and therefore the highest PDss and the lowest MNTD. We find that the youngest and oldest substrates (the latter on the Brazilian and Guiana Shields) have the highest ses.PDss and ses.MNTD. MPD and ses.MPD are strongly correlated with how evenly taxa are distributed among the three principal angiosperm clades and are both highest in western Amazonia. Meanwhile, seasonally dry tropical forest (SDTF) and forests on white sands have low PD, as evaluated by any metric. Main conclusions: High ses.PDss and ses.MNTD reflect greater lineage diversity in communities. We suggest that high ses.PDss and ses.MNTD in western Amazonia results from its favourable, easy-to-colonize environment, whereas high values in the Brazilian and Guianan Shields may be due to accumulation of lineages over a longer period of time. White-sand forests and SDTF are dominated by close relatives from fewer lineages, perhaps reflecting ecophysiological barriers that are difficult to surmount evolutionarily. Because MPD and ses.MPD do not reflect lineage diversity per se, we suggest that PDss, ses.PDss and ses.MNTD may be the most useful diversity metrics for setting large-scale conservation priorities

    Evolutionary Heritage Influences Amazon Tree Ecology

    Get PDF
    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change

    Evolutionary Heritage Influences Amazon Tree Ecology

    Get PDF
    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change

    The global biogeography of tree leaf form and habit

    Get PDF
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17‚Äď34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling

    Integrated global assessment of the natural forest carbon potential

    Get PDF
    Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system 1. Remote-sensing estimates to quantify carbon losses from global forests 2‚Äď5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced 6 and satellite-derived approaches 2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only¬†a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151‚Äď363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea 2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets

    Local hydrological conditions influence tree diversity and composition across the Amazon basin

    Get PDF
    Tree diversity and composition in Amazonia are known to be strongly determined by the water supplied by precipitation. Nevertheless, within the same climatic regime, water availability is modulated by local topography and soil characteristics (hereafter referred to as local hydrological conditions), varying from saturated and poorly drained to well-drained and potentially dry areas. While these conditions may be expected to influence species distribution, the impacts of local hydrological conditions on tree diversity and composition remain poorly understood at the whole Amazon basin scale. Using a dataset of 443 1-ha non-flooded forest plots distributed across the basin, we investigate how local hydrological conditions influence 1) tree alpha diversity, 2) the community-weighted wood density mean (CWM-wd) ‚Äď a proxy for hydraulic resistance and 3) tree species composition. We find that the effect of local hydrological conditions on tree diversity depends on climate, being more evident in wetter forests, where diversity increases towards locations with well-drained soils. CWM-wd increased towards better drained soils in Southern and Western Amazonia. Tree species composition changed along local soil hydrological gradients in Central-Eastern, Western and Southern Amazonia, and those changes were correlated with changes in the mean wood density of plots. Our results suggest that local hydrological gradients filter species, influencing the diversity and composition of Amazonian forests. Overall, this study shows that the effect of local hydrological conditions is pervasive, extending over wide Amazonian regions, and reinforces the importance of accounting for local topography and hydrology to better understand the likely response and resilience of forests to increased frequency of extreme climate events and rising temperatures
    • ‚Ķ
    corecore