143 research outputs found

    Spindown Polyhedra

    Get PDF
    Magic: the gathering is a trading card game published by Wizards of the Coast [1]. The aim of most variants of the game is to reduce your opponent's life total from twenty to zero, thus winning the game. As it may take several turns to reduce a player's life total to zero, players need a mechanism to keep track of their current life total. For this purpose, players often use a device called a spindown life counter, shown in Figure 1. A spindown life counter is an icosahedron with a special labelling of the faces, such that βˆ’ starting with 20 life total βˆ’ a player can reduce their life total in decrements of one by rolling the icosahedron onto an adjacent face each time. A spindown life counter appears similar to a standard icosahedral die, known in gaming as a d20; however, the labelling of faces is different, as also shown in Figure 1

    A Warm-start Interior-point Method for Predictive Control

    Get PDF
    In predictive control, a quadratic program (QP) needs to be solved at each sampling instant. We present a new warm-start strategy to solve a QP with an interior-point method whose data is slightly perturbed from the previous QP. In this strategy, an initial guess of the unknown variables in the perturbed problem is determined from the computed solution of the previous problem. We demonstrate the effectiveness of our warm-start strategy to a number of online benchmark problems. Numerical results indicate that the proposed technique depends upon the size of perturbation and it leads to a reduction of 30–74% in floating point operations compared to a cold-start interior-point method

    Control-theoretic forward error analysis of iterative numerical algorithms

    Get PDF

    A novel 2D filter design methodology

    Get PDF
    Published versio

    Quantization in Control Systems and Forward Error Analysis of Iterative Numerical Algorithms

    Get PDF
    The use of control theory to study iterative algorithms, which can be considered as dynamical systems, opens many opportunities to find new tools for analysis of algorithms. In this paper we show that results from the study of quantization effects in control systems can be used to find systematic ways for forward error analysis of iterative algorithms. The proposed schemes are applied to the classical iterative methods for solving a system of linear equations. The obtained bounds are compared with bounds given in the numerical analysis literature

    Certified Roundoff Error Bounds Using Semidefinite Programming.

    Get PDF
    Roundoff errors cannot be avoided when implementing numerical programs with finite precision. The ability to reason about rounding is especially important if one wants to explore a range of potential representations, for instance for FPGAs or custom hardware implementation. This problem becomes challenging when the program does not employ solely linear operations as non-linearities are inherent to many interesting computational problems in real-world applications. Existing solutions to reasoning are limited in the presence of nonlinear correlations between variables, leading to either imprecise bounds or high analysis time. Furthermore, while it is easy to implement a straightforward method such as interval arithmetic, sophisticated techniques are less straightforward to implement in a formal setting. Thus there is a need for methods which output certificates that can be formally validated inside a proof assistant. We present a framework to provide upper bounds on absolute roundoff errors. This framework is based on optimization techniques employing semidefinite programming and sums of squares certificates, which can be formally checked inside the Coq theorem prover. Our tool covers a wide range of nonlinear programs, including polynomials and transcendental operations as well as conditional statements. We illustrate the efficiency and precision of this tool on non-trivial programs coming from biology, optimization and space control. Our tool produces more precise error bounds for 37 percent of all programs and yields better performance in 73 percent of all programs

    A heuristic approach for multiple restricted multiplication

    Get PDF
    Published versio

    Fast word-level power models for synthesis of FPGA-based arithmetic

    Get PDF
    Published versio
    • …
    corecore