1,789 research outputs found

    Depletion of Cytotoxic T-Cells Does Not Protect NUP98-HOXD13 Mice from Myelodysplastic Syndrome but Reveals a Modest Tumor Immunosurveillance Effect

    Get PDF
    Myelodysplastic syndrome (MDS) and aplastic anemia (AA) patients both present with symptoms of bone marrow failure. In many AA patients, these features are thought to result from an oligoclonal expansion of cytotoxic T-cells that destroy haematopoietic stem or progenitor cells. This notion is supported by the observation that AA patients respond to immunosuppressive therapy. A fraction of MDS patients also respond well to immunosuppressive therapy suggesting a similar role for cytotoxic T-cells in the etiology of MDS, however the role of cytotoxic T-cells in MDS remains unclear. Mice that express a NUP98-HOXD13 (NHD13) transgene develop a MDS that closely mimics the human condition in terms of dysplasia, ineffective hematopoiesis, and transformation to acute myeloid leukemia (AML). We followed a cohort of NHD13 mice lacking the Rag1 protein (NHD13/Rag1KO) to determine if the absence of lymphocytes might 1) delay the onset and/or diminish the severity of the MDS, or 2) effect malignant transformation and survival of the NHD13 mice. No difference was seen in the onset or severity of MDS between the NHD13 and NHD13/Rag1KO mice. However, NHD13/Rag1KO mice had decreased survival and showed a trend toward increased incidence of transformation to AML compared to the NHD13 mice, suggesting protection from AML transformation by a modest immuno-surveillance effect. In the absence of functional Tcrb signaling in the NHD13/Rag1KO T-cell tumors, Pak7 was identified as a potential Tcrb surrogate survival signal

    Initial adhesion of bone marrow stromal cells to various bone graft substitutes

    Get PDF
    Purpose: The aim of this study is to determine whether certain biomaterials have the potential to support cell attachment. After seeding bone marrow stromal cells onto the biomaterials, we investigated their responses to each material in vitro. Methods: Rat bone marrow derived stromal cells were used. The biomaterials were deproteinized bovine bone mineral (DBBM), DBBM coated with fibronectin (FN), synthetic hydroxyapatite (HA), HA coated with FN, HA coated with beta-tricalcium phosphate (TCP), and pure beta-TCP. With confocal laser scanning microscopy, actin filaments and vinculin were observed after 6, 12, and 24 hours of cell seeding. The morphological features of cells on each biomaterial were observed using scanning electron microscopy at day 1 and 7. Results: The cells on HA/FN and HA spread widely and showed better defined actin cytoskeletons than those on the other biomaterials. At the initial phase, FN seemed to have a favorable effect on cell adhesion. In DBBM, very few cells adhered to the surface. Conclusions: Within the limitations of this study, we can conclude that in contrast with DBBM not supporting cell attachment, HA provided a more favorable environment with respect to cell attachment. (C) 2011 Korean Academy of Periodontology.This work was supported by a National Research Foundation of Korea Grant funded by the Government of the Republic of Korea (2008-E00580)

    A Primary Cardiac Sarcoma Spreading Along the Pacing Leads of a Permanent Pacemaker

    Get PDF

    Impact on environment, ecosystem, diversity and health from culturing and using GMOs as feed and food

    Get PDF
    Modern agriculture provides the potential for sustainable feeding of the world's increasing population. Up to the present moment, genetically modified (GM) products have enabled increased yields and reduced pesticide usage. Nevertheless, GM products are controversial amongst policy makers, scientists and the consumers, regarding their possible environmental, ecological, and health risks. Scientific-and-political debates can even influence legislation and prospective risk assessment procedure. Currently, the scientifically-assessed direct hazardous impacts of GM food and feed on fauna and flora are conflicting; indeed, a review of literature available data provides some evidence of GM environmental and health risks. Although the consequences of gene flow and risks to biodiversity are debatable. Risks to the environment and ecosystems can exist, such as the evolution of weed herbicide resistance during GM cultivation. A matter of high importance is to provide precise knowledge and adequate current information to regulatory agencies, governments, policy makers, researchers, and commercial GMO-releasing companies to enable them to thoroughly investigate the possible risks

    Triggering Apoptotic Death of Human Malignant Melanoma A375.S2 Cells by Bufalin: Involvement of Caspase Cascade-Dependent and Independent Mitochondrial Signaling Pathways

    Get PDF
    Bufalin was obtained from the skin and parotid venom glands of toad and has been shown to induce cytotoxic effects in various types of cancer cell lines, but there is no report to show that whether bufalin affects human skin cancer cells. The aim of this investigation was to study the effects of bufalin on human malignant melanoma A375.S2 cells and to elucidate possible mechanisms involved in induction of apoptosis. A375.S2 cells were treated with different concentrations of bufalin for a specific time period and investigated for effects on apoptotic analyses. Our results indicated that cells after exposure to bufalin significantly decreased cell viability, and induced cell morphological changes and chromatin condensation in a concentration-dependent manner. Flow cytometric assays indicated that bufalin promoted ROS productions, loss of mitochondrial membrane potential (ΔΨm), intracellular Ca2+ release, and nitric oxide (NO) formations in A375.S2 cells. Additionally, the apoptotic induction of bufalin on A375.S2 cells resulted from mitochondrial dysfunction-related responses (disruption of the ΔΨm and releases of cytochrome c, AIF, and Endo G), and activations of caspase-3, caspase-8 and caspase-9 expressions. Based on those observations, we suggest that bufalin-triggered apoptosis in A375.S2 cells is correlated with extrinsic- and mitochondria-mediated multiple signal pathways

    Multimorbidity, mortality, and HbA1c in type 2 diabetes: a cohort study with UK and Taiwanese cohorts

    Get PDF
    Background: There is emerging interest in multimorbidity in type 2 diabetes (T2D), which can be either concordant (T2D related) or discordant (unrelated), as a way of understanding the burden of disease in T2D. Current diabetes guidelines acknowledge the complex nature of multimorbidity, the management of which should be based on the patient’s individual clinical needs and comorbidities. However, although associations between multimorbidity, glycated haemoglobin (HbA1c), and mortality in people with T2D have been studied to some extent, significant gaps remain, particularly regarding different patterns of multimorbidity, including concordant and discordant conditions. This study explores associations between multimorbidity (total condition counts/concordant/discordant/different combinations of conditions), baseline HbA1c, and all-cause mortality in T2D. Methods and findings: We studied two longitudinal cohorts of people with T2D using the UK Biobank (n = 20,569) and the Taiwan National Diabetes Care Management Program (NDCMP) (n = 59,657). The number of conditions in addition to T2D was used to quantify total multimorbidity, concordant, and discordant counts, and the effects of different combinations of conditions were also studied. Outcomes of interest were baseline HbA1c and all-cause mortality. For the UK Biobank and Taiwan NDCMP, mean (SD) ages were 60.2 (6.8) years and 60.8 (11.3) years; 7,579 (36.8%) and 31,339 (52.5%) were female; body mass index (BMI) medians (IQR) were 30.8 (27.7, 34.8) kg/m2 and 25.6 (23.5, 28.7) kg/m2; and 2,197 (10.8%) and 9,423 (15.8) were current smokers, respectively. Increasing total and discordant multimorbidity counts were associated with lower HbA1c and increased mortality in both datasets. In Taiwan NDCMP, for those with four or more additional conditions compared with T2D only, the mean difference (95% CI) in HbA1c was −0.82% (−0.88, −0.76) p < 0.001. In UK Biobank, hazard ratios (HRs) (95% CI) for all-cause mortality in people with T2D and one, two, three, and four or more additional conditions compared with those without comorbidity were 1.20 (0.91–1.56) p < 0.001, 1.75 (1.35–2.27) p < 0.001, 2.17 (1.67–2.81) p < 0.001, and 3.14 (2.43–4.03) p < 0.001, respectively. Both concordant/discordant conditions were significantly associated with mortality; however, HRs were largest for concordant conditions. Those with four or more concordant conditions had >5 times the mortality (5.83 [4.28–7.93] p <0.001). HRs for NDCMP were similar to those from UK Biobank for all multimorbidity counts. For those with two conditions in addition to T2D, cardiovascular diseases featured in 18 of the top 20 combinations most highly associated with mortality in UK Biobank and 12 of the top combinations in the Taiwan NDCMP. In UK Biobank, a combination of coronary heart disease and heart failure in addition to T2D had the largest effect size on mortality, with a HR (95% CI) of 4.37 (3.59–5.32) p < 0.001, whereas in the Taiwan NDCMP, a combination of painful conditions and alcohol problems had the largest effect size on mortality, with an HR (95% CI) of 4.02 (3.08–5.23) p < 0.001. One limitation to note is that we were unable to model for changes in multimorbidity during our study period. Conclusions: Multimorbidity patterns associated with the highest mortality differed between UK Biobank (a population predominantly comprising people of European descent) and the Taiwan NDCMP, a predominantly ethnic Chinese population. Future research should explore the mechanisms underpinning the observed relationship between increasing multimorbidity count and reduced HbA1c alongside increased mortality in people with T2D and further examine the implications of different patterns of multimorbidity across different ethnic groups. Better understanding of these issues, especially effects of condition type, will enable more effective personalisation of care

    Activations of Both Extrinsic and Intrinsic Pathways in HCT 116 Human Colorectal Cancer Cells Contribute to Apoptosis through p53-Mediated ATM/Fas Signaling by Emilia sonchifolia Extract, a Folklore Medicinal Plant

    Get PDF
    Emilia sonchifolia (L.) DC (Compositae), an herbaceous plant found in Taiwan and India, is used as folk medicine. The clinical applications include inflammation, rheumatism, cough, cuts fever, dysentery, analgesic, and antibacteria. The activities of Emilia sonchifolia extract (ESE) on colorectal cancer cell death have not been fully investigated. The purpose of this study explored the induction of apoptosis and its molecular mechanisms in ESE-treated HCT 116 human colorectal cancer cells in vitro. The methanolic ESE was characterized, and γ-humulene was formed as the major constituent (63.86%). ESE induced cell growth inhibition in a concentration- and time-dependent response by MTT assay. Apoptotic cells (DNA fragmentation, an apoptotic catachrestic) were found after ESE treatment by TUNEL assay and DNA gel electrophoresis. Alternatively, ESE stimulated the activities of caspase-3, -8, and -9 and their specific caspase inhibitors protected against ESE-induced cytotoxicity. ESE promoted the mitochondria-dependent and death-receptor-associated protein levels. Also, ESE increased ROS production and upregulated the levels of ATM, p53, and Fas in HCT 116 cells. Strikingly, p53 siRNA reversed ESE-reduced viability involved in p53-mediated ATM/Fas signaling in HCT 116 cells. In summary, our result is the first report suggesting that ESE may be potentially efficacious in the treatment of colorectal cancer
    corecore