12,264 research outputs found

    Multipole Gravitational Lensing and High-order Perturbations on the Quadrupole Lens

    Full text link
    An arbitrary surface mass density of gravitational lens can be decomposed into multipole components. We simulate the ray-tracing for the multipolar mass distribution of generalized SIS (Singular Isothermal Sphere) model, based on the deflection angles which are analytically calculated. The magnification patterns in the source plane are then derived from inverse shooting technique. As have been found, the caustics of odd mode lenses are composed of two overlapping layers for some lens models. When a point source traverses such kind of overlapping caustics, the image numbers change by \pm 4, rather than \pm 2. There are two kinds of images for the caustics. One is the critical curve and the other is the transition locus. It is found that the image number of the fold is exactly the average value of image numbers on two sides of the fold, while the image number of the cusp is equal to the smaller one. We also focus on the magnification patterns of the quadrupole (m = 2) lenses under the perturbations of m = 3, 4 and 5 mode components, and found that one, two, and three butterfly or swallowtail singularities can be produced respectively. With the increasing intensity of the high-order perturbations, the singularities grow up to bring sixfold image regions. If these perturbations are large enough to let two or three of the butterflies or swallowtails contact, eightfold or tenfold image regions can be produced as well. The possible astronomical applications are discussed.Comment: 24 pages, 6 figure

    Structure of CdTe/ZnTe superlattices

    Get PDF
    The structure of CdTe/ZnTe superlattices has been analyzed through θ/2θ x‐ray diffraction, photoluminescence, and in situ reflection high‐energy electron diffraction (RHEED) measurements. Samples are found to break away from Cd_(x)Zn_(1−x)Te buffer layers as a consequence of the 6% lattice mismatch in this system. However, defect densities in these superlattices are seen to drop dramatically away from the buffer layer interface, accounting for the intense photoluminescence and high‐average strain fields seen in each of our samples. Observed variations in residual strains suggest that growth conditions play a role in forming misfit defects. This could explain discrepancies with calculated values of critical thickness based on models which neglect growth conditions. Photoluminescence spectra reveal that layer‐to‐layer growth proceeded with single monolayer uniformity, suggesting highly reproducible growth. Our results give hope for relatively defect‐free Cd_(x)Zn_(1−x)Te/Cd_(y)Zn_(1−y)Te superlattices with the potential for applications to optoelectronics offered by intense visible light emitters