7 research outputs found

    Circulation pattern controls of wet days and dry days in Free State, South Africa

    No full text
    Atmospheric circulation is a vital process in the transport of heat, moisture, and pollutants around the globe. The variability of rainfall depends to some extent on the atmospheric circulation. This paper investigates synoptic situations in southern Africa that can be associated with wet days and dry days in Free State, South Africa, in addition to the underlying dynamics. Principal component analysis was applied to the T-mode matrix (variable is time series and observation is grid points at which the field was observed) of daily mean sea level pressure field from 1979 to 2018 in classifying the circulation patterns in southern Africa. 18 circulation types (CTs) were classified in the study region. From the linkage of the CTs to the observed rainfall data, from 11 stations in Free State, it was found that dominant austral winter and late austral autumn CTs have a higher probability of being associated with dry days in Free State. Dominant austral summer and late austral spring CTs were found to have a higher probability of being associated with wet days in Free State. Cyclonic/anti-cyclonic activity over the southwest Indian Ocean, explained to a good extent, the inter-seasonal variability of rainfall in Free State. The synoptic state associated with a stronger anti-cyclonic circulation at the western branch of the South Indian Ocean high-pressure, during austral summer, leading to enhanced low-level moisture transport by southeast winds was found to have the highest probability of being associated with above-average rainfall in most regions in Free State. On the other hand, the synoptic state associated with enhanced transport of cold dry air, by the extratropical westerlies, was found to have the highest probability of being associated with (winter) dryness in Free State

    Exploring non-linear modes of the subtropical Indian Ocean Dipole using autoencoder neural networks

    No full text
    The subtropical Indian Ocean Dipole (SIOD) significantly influences climate variability, predominantly within parts of the Southern Hemisphere. This study applies an autoencoder—a type of artificial neural network (ANN)—known for its ability to capture intricate non-linear relationships in data through the process of encoding and decoding—to analyze the spatiotemporal characteristics of the SIOD. The encoded SIOD pattern(s) is compared to the conventional definition of the SIOD, calculated as the sea surface temperature (SST) anomaly difference between the western and eastern subtropical Indian Ocean. The analysis reveals two encoded patterns consistent with the conventional SIOD structure, predominantly represented by the SST dipole pattern south of Madagascar and off Australia’s west coast. During different analysis periods, distinct variability in the global SST patterns associated with the SIOD was observed. This variability underscores the SIOD’s dynamic nature and the challenges of accurately defining modes of variability with limited records. One of the ANN patterns has a substantial congruence match of 0.92 with the conventional SIOD pattern, while the other represents an alternate non-linear pattern within the SIOD. This implies the potential existence of additional non-linear SIOD patterns in the subtropical Indian Ocean, complementing the traditional model. When global temperature and precipitation are regressed onto the ANN temporal patterns and the conventional SIOD index, both appear to be associated with anomalous climate conditions over parts of Australia, with several other consistent global impacts. Nevertheless, due to the non-linear nature of the ANN patterns, their effects on local temperature and precipitation vary across different regions as compared to the conventional SIOD index. This study highlights that while the conventional SIOD pattern is consistent with the ANN-derived SIOD pattern, the climate system’s complexity and non-linearity might require ANN modeling to advance our comprehension of climatic modes

    On the Relationship between Circulation Patterns, the Southern Annular Mode, and Rainfall Variability in Western Cape

    No full text
    This study investigates circulation types (CTs) in Africa, south of the equator, that are related to wet and dry conditions in the Western Cape, the statistical relationship between the selected CTs and the Southern Annular Mode (SAM), and changes in the frequency of occurrence of the CTs related to the SAM under the ssp585 scenario. Obliquely rotated principal component analysis applied to sea level pressure (SLP) was used to classify CTs in Africa, south of the equator. Three CTs were found to have a high probability of being associated with wet days in the Western Cape, and four CTs were equally found to have a high probability of being associated with dry days in the Western Cape. Generally, the dry/wet CTs feature the southward/northward track of the mid-latitude cyclone, adjacent to South Africa; anti-cyclonic/cyclonic relative vorticity, and poleward/equatorward track of westerlies, south of South Africa. One of the selected wet CTs was significantly related to variations of the SAM. Years with an above-average SAM index correlated with the below-average frequency of occurrences of the wet CT. The results suggest that through the dynamics of the CT, the SAM might control the rainfall variability of the Western Cape. Under the ssp585 scenario, the analyzed climate models indicated a possible decrease in the frequency of occurrence of the aforementioned wet CT associated with cyclonic activity in the mid-latitudes, and an increase in the frequency of the occurrence of CT associated with enhanced SLP at mid-latitudes

    The Imprint of the Southern Annular Mode on Black Carbon AOD in the Western Cape Province

    No full text
    This study examines the relationship between variations of the Southern Annular Mode (SAM) and black carbon (BC) at 550 nm aerosol optical depth (AOD) in the Western Cape province (WC). Variations of the positive (negative) phase of the SAM are found to be related to regional circulation types (CTs) in southern Africa, associated with suppressed (enhanced) westerly wind over the WC through the southward (northward) migration of Southern Hemisphere mid-latitude cyclones. The CTs related to positive (negative) SAM anomalies induce stable (unstable) atmospheric conditions over the southwestern regions of the WC, especially during the austral winter and autumn seasons. Through the control of CTs, positive (negative) SAM phases tend to contribute to the build-up (dispersion and dilution) of BC in the study region because they imply dry (wet) conditions which favor the build-up (washing out) of pollutant particles in the atmosphere. Indeed, recent years with an above-average frequency of CTs related to positive (negative) SAM anomalies are associated with a high (low) BC AOD over southwesternmost Africa

    Global trends in atmospheric layer thickness since 1940 and relationships with tropical and extratropical climate forcing

    No full text
    Global warming necessitates continual insights into changing atmospheric temperatures to enhance climate change monitoring and prediction. The thickness of an atmospheric layer serves as an effective proxy for the average temperature of that layer, playing a pivotal role in weather forecasting, understanding atmospheric dynamics, and detecting shifts in extreme weather conditions. This study investigates the global trends in thickness of the layer between 1000 hPa and 500 hPa, from 1940 to the present and evaluates the impact of tropical and extra-tropical climate modes on these trends. Our findings reveal a consistent, statistically significant positive trend in atmospheric layer thickness. However, the magnitude of this trend varies both regionally and seasonally. The most substantial absolute changes are observed in the high latitudes during their respective winter seasons; however, when considering global changes relative to each location’s unique historical variability, the most pronounced increase occurs in the tropics, specifically over central Africa, with a standard deviation increase of up to 0.03 σ yr ^−1 . Based on the relative changes, the thickness over the Southern Hemisphere’s high-latitude landmasses is increasing at a faster pace during its winter compared to the Northern Hemisphere during its winter. Furthermore, our analysis of the impact of dominant tropical and extra-tropical climate modes revealed a strong correlation ( R ∼ 0.9) between sea surface temperature changes in the Pacific warm pool region and the global average thickness. This relationship accounts for about 76% to 78% variance of the inter-annual variability in thickness. Consequently, we identify the increase in sea surface temperature in the Indo-Pacific warm pool as a significant controller of the rate and magnitude of atmospheric layer thickness changes globally. This underscores the crucial role of oceanic-atmospheric interactions in driving global climate variations and extremes