143 research outputs found

    Post-Racial Ideology and Implicit Racial Bias

    Get PDF
    This study assesses college students from the University of New Hampshire (UNH) and their attitudes and opinions toward people of color, specifically looking at racial/ethnic identity and campus social climate. With 362 respondents from the University of New Hampshire who answered our online survey, it looked at the participants’ post-racial ideologies and the participant’s racial/ethnic identity. This study finds that there is a correlation between racial identity and post-racial beliefs. The study found that 82 percent of the student respondents did not believe that we, as a society, lived in a post-racial America. It was also discovered that the student respondents who did believe we live in a post-racial society (eighteen percent) were almost primarily White participants. The research also shows that in comparison to students of color, White students are more likely to believe that there is little to no racial prejudice or discrimination on UNH’s campus. While this data gives important insight into the racial attitudes at UNH, having a more diverse demographic and a larger sample size would improve the research

    The Warped Plane of the Classical Kuiper Belt

    Full text link
    By numerically integrating the orbits of the giant planets and of test particles over a period of four billion years, we follow the evolution of the location of the midplane of the Kuiper belt. The Classical Kuiper belt conforms to a warped sheet that precesses with a 1.9 Myr period. The present-day location of the Kuiper belt plane can be computed using linear secular perturbation theory: the local normal to the plane is given by the theory's forced inclination vector, which is specific to every semimajor axis. The Kuiper belt plane does not coincide with the invariable plane, but deviates from it by up to a few degrees in stable zones. For example, at a semimajor axis of 38 AU, the local Kuiper belt plane has an inclination of 1.9 deg and a longitude of ascending node of 149.9 deg when referred to the mean ecliptic and equinox of J2000. At a semimajor axis of 43 AU, the local plane has an inclination of 1.9 deg and a nodal longitude of 78.3 deg. Only at infinite semimajor axis does the Kuiper belt plane merge with the invariable plane, whose inclination is 1.6 deg and nodal longitude is 107.7 deg. A Kuiper belt object keeps its inclination relative to the Kuiper belt plane nearly constant, even while the latter plane departs from the trajectory predicted by linear theory. The constancy of relative inclination reflects the undamped amplitude of free oscillation. Current observations of Classical Kuiper belt objects are consistent with the plane being warped by the giant planets alone, but the sample size will need to increase by a few times before confirmation exceeds 3-sigma in confidence. In principle, differences between the theoretically expected plane and the observed plane could be used to infer as yet unseen masses orbiting the Sun, but carrying out such a program would be challenging.Comment: Astronomical Journal, in press. This version contains more details in the abstract and minor proof correction

    The effect of orbital evolution on the Haumea (2003 EL61) collisional family

    Full text link
    The Haumea family is currently the only identified collisional family in the Kuiper belt. We numerically simulate the long-term dynamical evolution of the family to estimate a lower limit of the family's age and to assess how the population of the family and its dynamical clustering are preserved over Gyr timescales. We find that the family is not younger than 100 Myr, and its age is at least 1 Gyr with 95% confidence. We find that for initial velocity dispersions of 50-400 m/s, approximately 20-45% of the family members are lost to close encounters with Neptune after 3.5 Gyr of orbital evolution. We apply these loss rates to two proposed models for the formation of the Haumea family, a graze-and-merge type collision between two similarly sized, differentiated KBOs or the collisional disruption of a satellite orbiting Haumea. For the graze-and-merge collision model, we calculate that >85% of the expected mass in surviving family members within 150 m/s of the collision has been identified, but that one to two times the mass of the known family members remains to be identified at larger velocities. For the satellite-break-up model, we estimate that the currently identified family members account for ~50% of the expected mass of the family. Taking observational incompleteness into account, the observed number of Haumea family members is consistent with either formation scenario at the 1 sigma level, however both models predict more objects at larger relative velocities (>150 m/s) than have been identified.Comment: 25 pages, accepted to Icaru

    Runaway Growth During Planet Formation: Explaining the Size Distribution of Large Kuiper Belt Objects

    Get PDF
    Runway growth is an important stage in planet formation during which large protoplanets form, while most of the initial mass remains in small planetesimals. The amount of mass converted into large protoplanets and their resulting size distribution are not well understood. Here, we use analytic work, that we confirm by coagulation simulations, to describe runaway growth and the corresponding evolution of the velocity dispersion. We find that runaway growth proceeds as follows: Initially all the mass resides in small planetesimals, with mass surface density \sigma, and large protoplanets start to form by accreting small planetesimals. This growth continues until growth by merging large protoplanets becomes comparable to growth by planetesimal accretion. This condition sets in when \Sigma/\sigma ~\alpha^{3/4} ~ 10^{-3}, where \Sigma is the mass surface density in protoplanets in a given logarithmic mass interval and \alpha is the ratio of the size of a body to its Hill radius. From then on, protoplanetary growth and the evolution of the velocity dispersion become self-similar and \Sigma remains roughly constant, since an increase in \Sigma by accretion of small planetesimals is balanced by a decrease due to merging with large protoplanets. We show that this growth leads to a protoplanet size distribution given by N(>R) \propto R^{-3} where N(>R) is the number of objects with radii greater than R (i.e., a differential power-law index of 4). We apply our results to the Kuiper Belt, which is a relic of runaway growth. Our results successfully match the observed Kuiper belt size distribution, they illuminate the physical processes that shaped it and explain the total mass that is present in large Kuiper belt objects (KBOs) today. This work suggests that the current mass in large KBOs is primordial and that it has not been significantly depleted. AbridgedComment: 13 pages, 7 figue

    Using Kuiper Belt Binaries to Constrain Neptune's Migration History

    Full text link
    Approximately 10-20% of all Kuiper belt objects (KBOs) occupy mean-motion resonances with Neptune. This dynamical configuration likely resulted from resonance capture as Neptune migrated outward during the late stages of planet formation. The details of Neptune's planetesimal-driven migration, including its radial extent and the concurrent eccentricity evolution of the planet, are the subject of considerable debate. Two qualitatively different proposals for resonance capture have been proposed--migration-induced capture driven by smooth outward evolution of Neptune's orbit and chaotic capture driven by damping of the planet's eccentricity near its current semi-major axis. We demonstrate that the distribution of comparable-mass, wide-separation binaries occupying resonant orbits can differentiate between these two scenarios. If migration-induced capture occurred, this fraction records information about the formation locations of different populations of KBOs. Chaotic capture, in contrast, randomizes the orbits of bodies as they are placed in resonance. In particular, migration-induced capture produces the following signatures. The 2:1 resonance should contain a dynamically cold component, with inclinations less than 5-10 degrees, having a binary fraction comparable to that among cold classical KBOs. If the 3:2 resonance also hosts a cold component, its binary fraction should be 20-30% lower than in the cold classical belt. Among cold 2:1 (and if present 3:2) KBOs, objects with eccentricities e < 0.2 should have a binary fraction ~20% larger than those with e > 0.2. Searches for cold components in the binary fractions of resonant KBOs are currently practical. The additional migration-generated trends described here may be distinguished with objects discovered by LSST. (Abstract abridged.)Comment: Accepted to ApJ, 15 pages, 4 figure

    Phosphorylation of the Bovine Papillomavirus E2 Protein on Tyrosine Regulates Its Transcription and Replication Functions

    Get PDF
    Papillomaviruses are small, double-stranded DNA viruses that encode the E2 protein, which controls transcription, replication, and genome maintenance in infected cells. Posttranslational modifications (PTMs) affecting E2 function and stability have been demonstrated for multiple types of papillomaviruses. Here we describe the first phosphorylation event involving a conserved tyrosine (Y) in the bovine papillomavirus 1 (BPV-1) E2 protein at amino acid 102. While its phosphodeficient phenylalanine (F) mutant activated both transcription and replication in luciferase reporter assays, a mutant that may act as a phosphomimetic, with a Y102-to-glutamate (E) mutation, lost both activities. The E2 Y102F protein interacted with cellular E2-binding factors and the viral helicase E1; however, in contrast, the Y102E mutant associated with only a subset and was unable to bind to E1. While the Y102F mutant fully supported transient viral DNA replication, BPV genomes encoding this mutation as well as Y102E were not maintained as stable episomes in murine C127 cells. These data imply that phosphorylation at Y102 disrupts the helical fold of the N-terminal region of E2 and its interaction with key cellular and viral proteins. We hypothesize that the resulting inhibition of viral transcription and replication in basal epithelial cells prevents the development of a lytic infection. IMPORTANCE Papillomaviruses (PVs) are small, double-stranded DNA viruses that are responsible for cervical, oropharyngeal, and various genitourinary cancers. Although vaccines against the major oncogenic human PVs are available, there is no effective treatment for existing infections. One approach to better understand the viral replicative cycle, and potential therapies to target it, is to examine the posttranslational modification of viral proteins and its effect on function. Here we have discovered that the bovine papillomavirus 1 (BPV-1) transcription and replication regulator E2 is phosphorylated at residue Y102. While a phosphodeficient mutant at this site was fully functional, a phosphomimetic mutant displayed impaired transcription and replication activity as well as a lack of an association with certain E2-binding proteins. This study highlights the influence of posttranslational modifications on viral protein function and provides additional insight into the complex interplay between papillomaviruses and their hosts

    Multi-site genetic analysis of diffusion images and voxelwise heritability analysis : a pilot project of the ENIGMA–DTI working group

    Get PDF
    The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium was set up to analyze brain measures and genotypes from multiple sites across the world to improve the power to detect genetic variants that influence the brain. Diffusion tensor imaging (DTI) yields quantitative measures sensitive to brain development and degeneration, and some common genetic variants may be associated with white matter integrity or connectivity. DTI measures, such as the fractional anisotropy (FA) of water diffusion, may be useful for identifying genetic variants that influence brain microstructure. However, genome-wide association studies (GWAS) require large populations to obtain sufficient power to detect and replicate significant effects, motivating a multi-site consortium effort. As part of an ENIGMA–DTI working group, we analyzed high-resolution FA images from multiple imaging sites across North America, Australia, and Europe, to address the challenge of harmonizing imaging data collected at multiple sites. Four hundred images of healthy adults aged 18–85 from four sites were used to create a template and corresponding skeletonized FA image as a common reference space. Using twin and pedigree samples of different ethnicities, we used our common template to evaluate the heritability of tract-derived FA measures. We show that our template is reliable for integrating multiple datasets by combining results through meta-analysis and unifying the data through exploratory mega-analyses. Our results may help prioritize regions of the FA map that are consistently influenced by additive genetic factors for future genetic discovery studies. Protocols and templates are publicly available at (http://enigma.loni.ucla.edu/ongoing/dti-working-group/)

    The Edgeworth-Kuiper debris disk

    Full text link
    (Abridged) The Edgeworth-Kuiper belt with its presumed dusty debris is a natural reference for extrsolar debris disks. We employ a new algorithm to eliminate the inclination and the distance selection effects in the known TNO populations to derive expected parameters of the "true" EKB. Its estimated mass is M_EKB=0.12 M_earth, which is by a factor of \sim 15 larger than the mass of the EKB objects detected so far. About a half of the total EKB mass is in classical and resonant objects and another half is in scattered ones. Treating the debiased populations of EKB objects as dust parent bodies, we then "generate" their dust disk with our collisional code. Apart from accurate handling of collisions and direct radiation pressure, we include the Poynting-Robertson (P-R) drag, which cannot be ignored for the EKB dust disk. Outside the classical EKB, the radial profile of the optical depth approximately follows tau \sim r^-2 which is roughly intermediate between the slope predicted analytically for collision-dominated (r^-1.5) and transport-dominated (r^-2.5) disks. The cross section-dominating grain size still lies just above the blowout size (\sim 1...2 \microm), as it would without the P-R transport. However, if the EKB were by one order of magnitude less massive, the optical depth profile would fall off as tau \sim r^-3, and the cross section-dominating grain size would shift from \sim 1...2\microm to ~100 \microm. These properties are seen if dust is assumed to be generated only by known TNOs. If the solar system were observed from outside, the thermal emission flux from the EKB dust would be about two orders of magnitude lower than for solar-type stars with the brightest known infrared excesses observed from the same distance. Herschel and other new-generation facilities should reveal extrasolar debris disks nearly as tenuous as the EKB disk. The Herschel/PACS instrument should be able to detect disks at a \sim 1...2M_EKB level.Comment: 18 pages, 14 figures, accepted for publication in A&

    The dynamical evolution of dwarf planet (136108) Haumea's collisional family: General properties and implications for the trans-Neptunian belt

    Get PDF
    Recently, the first collisional family was identified in the trans-Neptunian belt. The family consists of Haumea and at least ten other ~100km-sized trans-Neptunian objects (TNOs) located in the region a = 42 - 44.5 AU. In this work, we model the long-term orbital evolution of an ensemble of fragments representing hypothetical post-collision distributions at the time of the family's birth. We consider three distinct scenarios, in which the kinetic energy of dispersed particles were varied such that their mean ejection velocities (veje) were of order 200 m/s, 300 m/s and 400 m/s, respectively. Each simulation considered resulted in collisional families that reproduced that currently observed. The results suggest that 60-75% of the fragments created in the collision will remain in the trans-Neptunian belt, even after 4 Gyr of dynamical evolution. The surviving particles were typically concentrated in wide regions of orbital element space centred on the initial impact location, with their orbits spread across a region spanning {\Delta}a ~ 6-12 AU, {\Delta}e ~ 0.1-0.15 and {\Delta}i ~ 7-10{\deg}. Most of the survivors populated the so-called Classical and Detached regions of the trans-Neptunian belt, whilst a minor fraction entered the Scattered Disk reservoir (<1%), or were captured in Neptunian mean motion resonances (<10%). In addition, except for those fragments located near strong resonances, the great majority displayed negligible long-term orbital variation. This implies that the orbital distribution of the intrinsic Haumean family can be used to constrain the orbital conditions and physical nature of the collision that created the family, billions of years ago. Indeed, our results suggest that the formation of the Haumean collisional family most likely occurred after the bulk of Neptune's migration was complete, or even some time after the migration had completely ceased.Comment: 38 pages, 13 figures, accepted for publication in MNRAS (The abstract was shortened. Original version can be found in the pdf file
    corecore