3,822 research outputs found

    Contrasting Behavior of Carbon Nucleation in the Initial Stages of Graphene Epitaxial Growth on Stepped Metal Surfaces

    Full text link
    Using first-principles calculations within density functional theory, we study the energetics and kinetics of carbon nucleation in the early stages of epitaxial graphene growth on three representative stepped metal surfaces: Ir(111), Ru(0001), and Cu(111). We find that on the flat surfaces of Ir(111) and Ru(0001), two carbon atoms repel each other, while they prefer to form a dimer on Cu(111). Moreover, the step edges on Ir and Ru surfaces cannot serve as effective trapping centers for single carbon adatoms, but can readily facilitate the formation of carbon dimers. These contrasting behaviors are attributed to the delicate competition between C-C bonding and C-metal bonding, and a simple generic principle is proposed to predict the nucleation sites of C adatoms on many other metal substrates with the C-metal bond strengths as the minimal inputs.Comment: 4 figures, submitted versio

    Relaxed Majorization-Minimization for Non-smooth and Non-convex Optimization

    Full text link
    We propose a new majorization-minimization (MM) method for non-smooth and non-convex programs, which is general enough to include the existing MM methods. Besides the local majorization condition, we only require that the difference between the directional derivatives of the objective function and its surrogate function vanishes when the number of iterations approaches infinity, which is a very weak condition. So our method can use a surrogate function that directly approximates the non-smooth objective function. In comparison, all the existing MM methods construct the surrogate function by approximating the smooth component of the objective function. We apply our relaxed MM methods to the robust matrix factorization (RMF) problem with different regularizations, where our locally majorant algorithm shows advantages over the state-of-the-art approaches for RMF. This is the first algorithm for RMF ensuring, without extra assumptions, that any limit point of the iterates is a stationary point.Comment: AAAI1

    Optofluidic circular grating distributed feedback dye laser

    Get PDF
    We demonstrate an optically pumped surface emitting optofluidic dye laser using a second-order circular grating distributed feedback resonator. We present a composite bilayer soft lithography technique specifically developed for the fabrication of our dye laser and investigate a hybrid polymer material system [poly(dimethylsiloxane)/perfluoropolyether] to construct high-resolution Bragg gratings. Our lasers emit single frequency light at low lasing thresholds of 6 µJ/mm^2. These optofluidic dye lasers can serve as low-cost and compact coherent light sources that are fully integrated within microfluidic analysis chips and provide an efficient approach to construct compact spectroscopy systems
    corecore