1,065 research outputs found

    Target shape effects on monoenergetic GeV proton acceleration

    Full text link
    When a circularly polarized laser pulse interacts with a foil target, there are three stages: pre-hole-boring, hole-boring and the light sail acceleration. We study the electron and ion dynamics in the first stage and find the minimum foil thickness requirement for a given laser intensity. Based on this analysis, we propose to use a shaped foil for ion acceleration, whose thickness varies transversely to match the laser intensity. Then, the target evolves into three regions: the acceleration, transparency and deformation regions. In the acceleration region, the target can be uniformly accelerated producing a mono-energetic and spatially collimated ion beam. Detailed numerical simulations are performed to check the feasibility and robustness of this scheme, such as the influence of shape factors and surface roughness. A GeV mono-energetic proton beam is observed in the three dimensional particle-in-cell simulations when a laser pulse with the focus intensity of 1022W=cm2 is used. The energy conversion efficiency of laser pulse to accelerated proton beam is more than 23%. Synchrotron radiation and damping effects are also checked in the interaction.Comment: 11 pages, 9 figure

    Physics-Informed Neural Networks for Prognostics and Health Management of Lithium-Ion Batteries

    Full text link
    For Prognostics and Health Management (PHM) of Lithium-ion (Li-ion) batteries, many models have been established to characterize their degradation process. The existing empirical or physical models can reveal important information regarding the degradation dynamics. However, there are no general and flexible methods to fuse the information represented by those models. Physics-Informed Neural Network (PINN) is an efficient tool to fuse empirical or physical dynamic models with data-driven models. To take full advantage of various information sources, we propose a model fusion scheme based on PINN. It is implemented by developing a semi-empirical semi-physical Partial Differential Equation (PDE) to model the degradation dynamics of Li-ion batteries. When there is little prior knowledge about the dynamics, we leverage the data-driven Deep Hidden Physics Model (DeepHPM) to discover the underlying governing dynamic models. The uncovered dynamics information is then fused with that mined by the surrogate neural network in the PINN framework. Moreover, an uncertainty-based adaptive weighting method is employed to balance the multiple learning tasks when training the PINN. The proposed methods are verified on a public dataset of Li-ion Phosphate (LFP)/graphite batteries.Comment: 14 pages, 10 figure

    Posterolateral Lumbar Spinal Fusion with Autogenous Bone Chips from Laminectomy Extended with OsteoSet®

    Get PDF
    BackgroundThis study was conducted to evaluate posterolateral lumbar fusion with autogenous corticocancellous bone chips from the laminae and spinous processes extended with OsteoSet® instead of cancellous bone from the iliac crest.MethodsA total of 124 patients who underwent posterior decompression and posterolateral fusion with instrumentation between May 2001 and December 2003 were analyzed retrospectively. The study population comprised 49 males and 75 females with a mean age of 66 ± 9.5 years. In all the patients, corticocancellous bone chips from laminectomy and OsteoSet® were used as the graft material. There was no cancellous bone harvested from the iliac crest. The follow-up period was 28 + 7.1 months.ResultsThe overall union rate was 91%, and the average union time was 3.9 months. There were 3 complications, including 2 patients with dura tear, and 1 with deep infection. At the final follow-up, the good and excellent results were up to 83.9%.ConclusionGraft material from laminae and spinous processes extended with OsteoSet® is reliable and effective enough to replace the graft from the posterior iliac crest

    Omics approach for generating a high-yield CHO cell line producing monoclonal antibodies

    Get PDF
    Chinese hamster ovary (CHO) cells are extensively used for the industrial manufacture of therapeutic antibodies. Generating high producing cell lines for secretory protein production requires knowing the bottleneck in the cellular machinery for protein expression. Integration site of gene of interest (GOI) is one of the important factors that influence the protein productivity. Even though screening of cells randomly integrated GOI can select high producing cells, the selected cell might not stable due to the chromosome instability. Here, we would like to look for host integration sites where GOI is high yield and stable by screening a single copy integration system. We developed several methods to identify integration sites including PCR based, whole genome sequencing based, and a platform to integrate a single copy of GOI into host genome. By determining the integration sites of the high producing clones, we can elucidate the major high yield sites for target gene expression. We have also employed the genome-editing tool, TALEN and CRISPR/cas9 to specifically integrate the vector with an antibody gene into two integration sites of CHO genome. Our data showed, IS1 and IS2 integration sites can be actively edited and specifically integrated an antibody expression vector of 15kb by either TALEN or CRISPR/Cas9. We successfully established site specifically integrated cell pools and expanded the FACS-sorted single cell into a cell line. Each single cell derived cell lines was confirmed by junction-PCR and sequence analysis. Furthermore, these single cells derived CHO cell lines are shown to express antibody gene with high titer. With the combination of omics knowledge and toolbox, including CHO genomics, transcriptomics and CHO specific microarray, GOI can be stably and highly produced

    Repeat expansion scanning of the NOTCH2NLC gene in patients with multiple system atrophy

    Get PDF
    © 2020 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association. Objective: Trinucleotide GGC repeat expansion in the 5’UTR of the NOTCH2NLC gene has been recognized as the pathogenesis of neuronal intranuclear inclusion disease (NIID). Previous studies have described that some NIID patients showed clinical and pathological similarities with multiple system atrophy (MSA). This study aimed to address the possibility that GGC repeat expansion in NOTCH2NLC might be associated with some cases diagnosed as MSA. Methods: A total of 189 patients with probable or possible MSA were recruited to screen for GGC repeat expansion in NOTCH2NLC by repeat-primed PCR (RP-PCR). In addition, long-read sequencing (LRS) was performed for all patients with RP-PCR-positive expansion, five patients with RP-PCR-negative expansion, and five controls on the Nanopore platform. Skin biopsies were performed on two patients with GGC expansion. Results: Five of 189 patients (2.6%) were found to have GGC expansion in NOTCH2NLC. LRS results identified that the five patients had GGC expansion between 101 and 266, but five patients with RP-PCR-negative expansion and five controls had GGC expansion between 8 and 29. Besides the typical symptoms and signs of MSA, patients with GGC expansion might have longer disease duration, severe urinary retention, and prominent cognitive impairment. In the skin samples from the patients with GGC expansion, typical p62-postive but alpha-synuclein-negative intranuclear inclusions were found in fibroblasts, adipocyte and ductal epithelial cells of sweat glands. Conclusion: Trinucleotide GGC repeat expansion in NOTCH2NLC could be observed in patients with clinically diagnosed MSA. Adult-onset NIID should be considered as a differential diagnosis of MSA

    Photoelectric converters with quantum coherence

    Get PDF
    Photon impingement is capable of liberating electrons in electronic devices and driving the electron flux from the lower chemical potential to higher chemical potential. Previous studies hinted that the thermodynamic efficiency of a nano-sized photoelectric converter at maximum power is bounded by the Curzon-Ahlborn efficiency. In this study, we apply quantum effects to design a photoelectric converter based on a three-level quantum dot (QD) interacting with fermionic baths and photons. We show that, by adopting a pair of suitable degenerate states, quantum coherences induced by the couplings of quantum dots (QDs) to sunlight and fermion baths can coexist steadily in nano-electronic systems. Our analysis indicates that the efficiency at maximum power is no more limited to Curzon-Ahlborn efficiency through manipulation of carefully controlled quantum coherences.Comment: 6 pages, 3 figure
    • …