9,406 research outputs found

    Continuous Monitoring of A/B Tests without Pain: Optional Stopping in Bayesian Testing

    Full text link
    A/B testing is one of the most successful applications of statistical theory in modern Internet age. One problem of Null Hypothesis Statistical Testing (NHST), the backbone of A/B testing methodology, is that experimenters are not allowed to continuously monitor the result and make decision in real time. Many people see this restriction as a setback against the trend in the technology toward real time data analytics. Recently, Bayesian Hypothesis Testing, which intuitively is more suitable for real time decision making, attracted growing interest as an alternative to NHST. While corrections of NHST for the continuous monitoring setting are well established in the existing literature and known in A/B testing community, the debate over the issue of whether continuous monitoring is a proper practice in Bayesian testing exists among both academic researchers and general practitioners. In this paper, we formally prove the validity of Bayesian testing with continuous monitoring when proper stopping rules are used, and illustrate the theoretical results with concrete simulation illustrations. We point out common bad practices where stopping rules are not proper and also compare our methodology to NHST corrections. General guidelines for researchers and practitioners are also provided

    Filter-And-Forward Distributed Beamforming in Relay Networks with Frequency Selective Fading

    Full text link
    A new approach to distributed cooperative beamforming in relay networks with frequency selective fading is proposed. It is assumed that all the relay nodes are equipped with finite impulse response (FIR) filters and use a filter-and-forward (FF) strategy to compensate for the transmitter-to-relay and relay-to-destination channels. Three relevant half-duplex distributed beamforming problems are considered. The first problem amounts to minimizing the total relay transmitted power subject to the destination quality-of-service (QoS) constraint. In the second and third problems, the destination QoS is maximized subject to the total and individual relay transmitted power constraints, respectively. For the first and second problems, closed-form solutions are obtained, whereas the third problem is solved using convex optimization. The latter convex optimization technique can be also directly extended to the case when the individual and total power constraints should be jointly taken into account. Simulation results demonstrate that in the frequency selective fading case, the proposed FF approach provides substantial performance improvements as compared to the commonly used amplify-and-forward (AF) relay beamforming strategy.Comment: Submitted to IEEE Trans. on Signal Processing on 8 July 200

    Spatially extended nature of resistive switching in perovskite oxide thin films

    Full text link
    We report the direct observation of the electric pulse induced resistance-change (EPIR) effect at the nano scale on La1-xSrxMnO3 (LSMO) thin films by the current measurement AFM technique. After a switching voltage of one polarity is applied across the sample by the AFM tip, the conductivity in a local nanometer region around the AFM tip is increased, and after a switching voltage of the opposite polarity is applied, the local conductivity is reduced. This reversible resistance switching effect is observed under both continuous and short pulse voltage switching conditions. It is important for future nanoscale non-volatile memory device applications.Comment: 11 pages, 3 figure

    ARPA Whitepaper

    Get PDF
    We propose a secure computation solution for blockchain networks. The correctness of computation is verifiable even under malicious majority condition using information-theoretic Message Authentication Code (MAC), and the privacy is preserved using Secret-Sharing. With state-of-the-art multiparty computation protocol and a layer2 solution, our privacy-preserving computation guarantees data security on blockchain, cryptographically, while reducing the heavy-lifting computation job to a few nodes. This breakthrough has several implications on the future of decentralized networks. First, secure computation can be used to support Private Smart Contracts, where consensus is reached without exposing the information in the public contract. Second, it enables data to be shared and used in trustless network, without disclosing the raw data during data-at-use, where data ownership and data usage is safely separated. Last but not least, computation and verification processes are separated, which can be perceived as computational sharding, this effectively makes the transaction processing speed linear to the number of participating nodes. Our objective is to deploy our secure computation network as an layer2 solution to any blockchain system. Smart Contracts\cite{smartcontract} will be used as bridge to link the blockchain and computation networks. Additionally, they will be used as verifier to ensure that outsourced computation is completed correctly. In order to achieve this, we first develop a general MPC network with advanced features, such as: 1) Secure Computation, 2) Off-chain Computation, 3) Verifiable Computation, and 4)Support dApps' needs like privacy-preserving data exchange

    Increasing Achievable Information Rates via Geometric Shaping

    Full text link
    Achievable information rates are used as a metric to design novel modulation formats via geometric shaping. The proposed geometrically shaped 256-ary constellation achieves SNR gains of up to 1.18 dB.Comment: Additional references have been adde

    Eight-dimensional Polarization-ring-switching Modulation Formats

    Full text link
    We propose two 8-dimensional (8D) modulation formats (8D-2048PRS-T1 and 8D-2048PRS-T2) with a spectral efficiency of 5.5 bit/4D-sym, where the 8 dimensions are obtained from two time slots and two polarizations. Both formats provide a higher tolerance to nonlinearity by selecting symbols with nonidentical states of polarization (SOPs) in two time slots. The performance of these novel 8D modulation formats is assessed in terms of the effective signal-to-noise ratio (SNR) and normalized generalized mutual information. 8D-2048PRS-T1 is more suitable for high SNRs, while 8D-2048PRS-T2 is shown to be more tolerant to nonlinearities. A sensitivity improvement of at least 0.25 dB is demonstrated by maximizing normalized generalized mutual information (NGMI). For a long-haul nonlinear optical fiber transmission system, the benefit of mitigating the nonlinearity is demonstrated and a reach increase of 6.7% (560 km) over time-domain hybrid four-dimensional two-amplitude eight-phase shift keying (TDH-4D-2A8PSK) is observed

    "Convertible Bond Underpricing: Renegotiable Covenants, Seasoning and Convergence"

    Get PDF
    We investigate the long-standing puzzle on the underpricings of convertible bonds. We hypothesize that the observed underpricing is induced by the possibility that a convertible bond might renegotiate on some of its covenants, e.g., an imbedded put option, in financial difficulties. Consistent with our hypothesis, we find that the initial underpricing is larger for lower rated bonds. The underpricing worsens if the issuer experiences subsequent financial difficulties. However, conditional on no rating downgrades, our main empirical result shows that convertible bond prices do converge to their theoretical prices within two years. This seasoning period is shorter for higher rated convertible bonds.
    corecore