14 research outputs found

    Quantifying the effect of uncertainty in input parameters in a simplified bidomain model of partial thickness ischaemia

    Get PDF
    Reduced blood flow in the coronary arteries can lead to damaged heart tissue (myocardial ischaemia). Although one method for detecting myocardial ischaemia involves changes in the ST segment of the electrocardiogram, the relationship between these changes and subendocardial ischaemia is not fully understood. In this study, we modelled ST-segment epicardial potentials in a slab model of cardiac ventricular tissue, with a central ischaemic region, using the bidomain model, which considers conduction longitudinal, transverse and normal to the cardiac fibres. We systematically quantified the effect of uncertainty on the input parameters, fibre rotation angle, ischaemic depth, blood conductivity and six bidomain conductivities, on outputs that characterise the epicardial potential distribution. We found that three typical types of epicardial potential distributions (one minimum over the central ischaemic region, a tripole of minima, and two minima flanking a central maximum) could all occur for a wide range of ischaemic depths. In addition, the positions of the minima were affected by both the fibre rotation angle and the ischaemic depth, but not by changes in the conductivity values. We also showed that the magnitude of ST depression is affected only by changes in the longitudinal and normal conductivities, but not by the transverse conductivities

    Uncertainty and variability in models of the cardiac action potential: Can we build trustworthy models?

    No full text
    Cardiac electrophysiology models have been developed for over 50 years, and now include detailed descriptions of individual ion currents and sub-cellular calcium handling. It is commonly accepted that there are many uncertainties in these systems, with quantities such as ion channel kinetics or expression levels being difficult to measure or variable between samples. Until recently, the original approach of describing model parameters using single values has been retained, and consequently the majority of mathematical models in use today provide point predictions, with no associated uncertainty. In recent years, statistical techniques have been developed and applied in many scientific areas to capture uncertainties in the quantities that determine model behaviour, and to provide a distribution of predictions which accounts for this uncertainty. In this paper we discuss this concept, which is termed uncertainty quantification, and consider how it might be applied to cardiac electrophysiology models. We present two case studies in which probability distributions, instead of individual numbers, are inferred from data to describe quantities such as maximal current densities. Then we show how these probabilistic representations of model parameters enable probabilities to be placed on predicted behaviours. We demonstrate how changes in these probability distributions across data sets offer insight into which currents cause beat-to-beat variability in canine APs. We conclude with a discussion of the challenges that this approach entails, and how it provides opportunities to improve our understanding of electrophysiology

    Sensitivity Analysis of Ventricular Activation and Electrocardiogram in Tailored Models of Heart-Failure Patients

    Get PDF
    Cardiac resynchronization therapy is not effective in a variable proportion of heart failure patients. An accurate knowledge of each patient's electroanatomical features could be helpful to determine the most appropriate treatment. The goal of this study was to analyze and quantify the sensitivity of left ventricular (LV) activation and the electrocardiogram (ECG) to changes in 39 parameters used to tune realistic anatomical-electrophysiological models of the heart. Electrical activity in the ventricles was simulated using a reaction-diffusion equation. To simulate cellular electrophysiology, the Ten Tusscher-Panfilov 2006 model was used. Intracardiac electrograms and 12-lead ECGs were computed by solving the bidomain equation. Parameters showing the highest sensitivity values were similar in the six patients studied. QRS complex and LV activation times were modulated by the sodium current, the cell surface-to-volume ratio in the LV, and tissue conductivities. The T-wavewas modulated by the calcium and rectifier-potassium currents, and the cell surface-to-volume ratio in both ventricles. We conclude that homogeneous changes in ionic currents entail similar effects in all ECG leads, whereas the effects of changes in tissue properties show larger inter-lead variability. The effects of parameter variations are highly consistent between patients and most of the model tuning could be performed with only ~10 parameters