150 research outputs found

    Brainstem evoked potentials and magnetic resonance imaging abnormalities in differential diagnosis of intracranial hypotension

    Get PDF
    Objective: To compare brainstem acoustic evoked potentials (BAEP)and magnetic resonance imaging (MRI)in the differential diagnosis of intracranial hypotension (IH), Chiari malformation (CM)and sensorineural hearing loss (SNHL). Methods: BAEP were recorded in 18 IH, 18 CM, 20 SNHL patients and 52 controls. MRI were acquired in all IH and CM patients. Results: Abnormal BAEP were observed in 94% of IH patients, in 33% of CM and 70% of SNHL patients. After recovery from IH, BAEP abnormalities disappeared. Internal auditory canal (IAC)MRI abnormalities were described in 88% of IH patients. MRI signs of IH were observed in 33\u201378% in IH patients, but the most frequent MRI sign was 8th nerve T2 hyperintensity, with contrast enhancement in T1 sequences. This finding, combined with wave I latency, yielded highest specificity and sensitivity for IH diagnosis. Conclusions: Our study points out how IH can be effectively distinguished from CM and SNHL through the contribution of neurophysiology and MRI; in particular, evaluation of the 8th nerve achieves a high sensitivity and specificity in patients with IH. Further studies are required to examine the combined use of BAEP recordings ad MRI in diagnosis and monitoring of patients affected by IH

    new morphologic variants of the hand motor cortex as seen with mr imaging in a large study population

    Get PDF
    BACKGROUND AND PURPOSE: The hand motor cortex (HMC) has been classically described as having an omega or epsilon shape in axial-plane images obtained with CT and MR imaging. The aim of this study was to use MR imaging and Talairach normalization in a large sample population that was homogeneous for age and handedness to evaluate in a sex model a new classification with 5 morphologic variants of the HMC in the axial plane (omega, medially asymmetric epsilon, epsilon, laterally asymmetric epsilon, and null). MATERIALS AND METHODS: Structural brain MR images were obtained from 257 right-handed healthy subjects (143 men and 114 women; mean age, 23.1 ¬Ī 1.1 years) via a Talairach space transformed 3D magnetization-prepared rapid acquisition of gradient echo sequence. The frequencies of the different HMC variants were reported for hemisphere and sex. RESULTS: The new variants of the HMC (medially asymmetric epsilon, laterally asymmetric epsilon, and null) were observed in 2.9%, 7.0%, and 1.8% of the hemispheres, respectively. Statistically significant sex differences were observed: The epsilon variant was twice as frequent in men, and an interhemispheric concordance for morphologic variants was observed only for women. CONCLUSION: The large study population permitted the description of a new morphologic classification that included 3 new variants of the HMC. This new morphologic classification should facilitate the identification of the precentral gyrus in subsequent studies and in everyday practice

    Documento de consenso interdisciplinar de expertos en el manejo de la disección aórtica tipo B: comentarios y novedades a la luz del INSTEAD-XL

    Get PDF
    ResumenAnte la ausencia de evidencia cient√≠fica s√≥lida, un comit√© de expertos europeos ha publicado en la revista Journal of the American College of Cardiology un documento de consenso sobre el manejo de los diferentes subgrupos de pacientes con disecci√≥n a√≥rtica tipo B. Este documento est√° basado en un metaan√°lisis que recopila toda la experiencia publicada en los √ļltimos a√Īos sobre disecci√≥n a√≥rtica tipo B, incluyendo a m√°s de 6.700 pacientes.A pesar de su mejor pron√≥stico en fase aguda que la disecci√≥n a√≥rtica tipo A, la disecci√≥n a√≥rtica tipo B presenta un mal pron√≥stico a medio y largo plazo. El manejo limitado al tratamiento m√©dico con control estricto de la presi√≥n arterial y el tratamiento de los casos complicados mediante cirug√≠a abierta o t√©cnicas endovasculares est√° sometido a controversia, especialmente por la disponibilidad y los buenos resultados de las t√©cnicas endovasculares. Este documento pretende apoyar a los cirujanos o m√©dicos que tratan la disecci√≥n a√≥rtica tipo B, estableciendo algunos algoritmos de manejo.Recogemos en este art√≠culo las conclusiones y los datos fundamentales de este documento de consenso.La aparici√≥n posterior de los resultados a 5 a√Īos del estudio INSTEAD a√Īaden una fuerte evidencia cient√≠fica en contra de alguna de las principales conclusiones alcanzadas en este consenso y retan este consenso logrado solamente un a√Īo antes.AbstractDue to a lack of solid scientific evidence, an european experts committee have published in Journal of the American College of Cardiology an consensus document about the management of different subgroups of patients with type B aortic dissection. This document is based on a meta-analisys including the recent published experience that includes more than 6700 patients with type B aortic dissection.In spite of the better prognosis compared to type A dissection in the short term, type B dissection has a bad long term prognosis. The conservative management limited to tight blood pressure control and close surveillance to treat complicated cases with open surgery or endovascular therapy is under discussion, specially due to the feasibility and good results of endovascular technique. This consensus intends to support surgeons or doctors who deal with type B dissection and stablishs some management algorithm.We present in this article the conclusions and main data from this consensus document.The posterior publication of 5 years results of INSTEAD study adds an strong scientific evidence against some of this consensus principal conclusions and challenge the consensus just one year later

    Conspicuity and muscle-invasiveness assessment for bladder cancer using VI-RADS: a multi-reader, contrast-free MRI study to determine optimal b-values for diffusion-weighted imaging

    Get PDF
    To (1) compare bladder cancer (BC) muscle invasiveness among three b-values using a contrast-free approach based on Vesical Imaging-Reporting and Data System (VI-RADS), to (2) determine if muscle-invasiveness assessment is affected by the reader experience, and to (3) compare BC conspicuity among three b-values, qualitatively and quantitatively

    Dynamic11 c-methionine pet-ct: Prognostic factors for disease progression and survival in patients with suspected glioma recurrence

    Get PDF
    Purpose: The prognostic evaluation of glioma recurrence patients is important in the therapeutic management. We investigated the prognostic value of11 C-methionine PET-CT (MET-PET) dynamic and semiquantitative parameters in patients with suspected glioma recurrence. Methods: Sixty-seven consecutive patients who underwent MET-PET for suspected glioma recurrence at MR were retrospectively included. Twenty-one patients underwent static MET-PET; 46/67 underwent dynamic MET-PET. In all patients, SUVmax, SUVmean and tumour-to-background ratio (T/B) were calculated. From dynamic acquisition, the shape and slope of time-activity curves, time-to-peak and its SUVmax (SUVmaxTTP ) were extrapolated. The prognostic value of PET parameters on progression-free (PFS) and overall survival (OS) was evaluated using Kaplan‚ÄďMeier survival estimates and Cox regression. Results: The overall median follow-up was 19 months from MET-PET. Recurrence patients (38/67) had higher SUVmax (p = 0.001), SUVmean (p = 0.002) and T/B (p < 0.001); deceased patients (16/67) showed higher SUVmax (p = 0.03), SUVmean (p = 0.03) and T/B (p = 0.006). All static parameters were associated with PFS (all p < 0.001); T/B was associated with OS (p = 0.031). Regarding kinetic analyses, recurrence (27/46) and deceased (14/46) patients had higher SUVmaxTTP (p = 0.02, p = 0.01, respectively). SUVmaxTTP was the only dynamic parameter associated with PFS (p = 0.02) and OS (p = 0.006). At univariate analysis, SUVmax, SUVmean, T/B and SUVmaxTTP were predictive for PFS (all p < 0.05); SUVmaxTTP was predictive for OS (p = 0.02). At multivariate analysis, SUVmaxTTP remained significant for PFS (p = 0.03). Conclusion: Semiquantitative parameters and SUVmaxTTP were associated with clinical outcomes in patients with suspected glioma recurrence. Dynamic PET-CT acquisition, with static and kinetic parameters, can be a valuable non-invasive prognostic marker, identifying patients with worse prognosis who require personalised therapy

    Accuracy and reproducibility of automated white matter hyperintensities segmentation with lesion segmentation tool: A European multi-site 3T study

    Get PDF
    Brain vascular damage accumulate in aging and often manifest as white matter hyperintensities (WMHs) on MRI. Despite increased interest in automated methods to segment WMHs, a gold standard has not been achieved and their longitudinal reproducibility has been poorly investigated. The aim of present work is to evaluate accuracy and reproducibility of two freely available segmentation algorithms. A harmonized MRI protocol was implemented in 3T-scanners across 13 European sites, each scanning five volunteers twice (test-retest) using 2D-FLAIR. Automated segmentation was performed using Lesion segmentation tool algorithms (LST): the Lesion growth algorithm (LGA) in SPM8 and 12 and the Lesion prediction algorithm (LPA). To assess reproducibility, we applied the LST longitudinal pipeline to the LGA and LPA outputs for both the test and retest scans. We evaluated volumetric and spatial accuracy comparing LGA and LPA with manual tracing, and for reproducibility the test versus retest. Median volume difference between automated WMH and manual segmentations (mL) was ‚ąí0.22[IQR = 0.50] for LGA-SPM8, ‚ąí0.12[0.57] for LGA-SPM12, ‚ąí0.09[0.53] for LPA, while the spatial accuracy (Dice Coefficient) was 0.29[0.31], 0.33[0.26] and 0.41[0.23], respectively. The reproducibility analysis showed a median reproducibility error of 20%[IQR = 41] for LGA-SPM8, 14% [31] for LGA-SPM12 and 10% [27] with the LPA cross-sectional pipeline. Applying the LST longitudinal pipeline, the reproducibility errors were considerably reduced (LGA: 0%[IQR = 0], p < 0.001; LPA: 0% [3], p < 0.001) compared to those derived using the cross-sectional algorithms. The DC using the longitudinal pipeline was excellent (median = 1) for LGA [IQR = 0] and LPA [0.02]. LST algorithms showed moderate accuracy and good reproducibility. Therefore, it can be used as a reliable cross-sectional and longitudinal tool in multi-site studies

    Cortical Representation of Lateralized Grasping in Chimpanzees (Pan troglodytes): A Combined MRI and PET Study

    Get PDF
    Functional imaging studies in humans have localized the motor-hand region to a neuroanatomical landmark call the KNOB within the precentral gyrus. It has also been reported that the KNOB is larger in the hemisphere contralateral to an individual's preferred hand, and therefore may represent the neural substrate for handedness. The KNOB has also been neuronatomically described in chimpanzees and other great apes and is similarly associated with handedness. However, whether the chimpanzee KNOB represents the hand region is unclear from the extant literature. Here, we used PET to quantify neural metabolic activity in chimpanzees when engaged in unilateral reach-and-grasping responses and found significantly lateralized activation of the KNOB region in the hemisphere contralateral to the hand used by the chimpanzees. We subsequently constructed a probabilistic map of the KNOB region in chimpanzees in order to assess the overlap in consistency in the anatomical landmarks of the KNOB with the functional maps generated from the PET analysis. We found significant overlap in the anatomical and functional voxels comprising the KNOB region, suggesting that the KNOB does correspond to the hand region in chimpanzees. Lastly, from the probabilistic maps, we compared right- and left-handed chimpanzees on lateralization in grey and white matter within the KNOB region and found that asymmetries in white matter of the KNOB region were larger in the hemisphere contralateral to the preferred hand. These results suggest that neuroanatomical asymmetries in the KNOB likely reflect changes in connectivity in primary motor cortex that are experience dependent in chimpanzees and possibly humans

    Multi-parametric MR Imaging Biomarkers Associated to Clinical Outcomes in Gliomas: A Systematic Review

    Full text link
    [EN] Purpose: To systematically review evidence regarding the association of multi-parametric biomarkers with clinical outcomes and their capacity to explain relevant subcompartments of gliomas. Materials and Methods: Scopus database was searched for original journal papers from January 1st, 2007 to February 20th , 2017 according to PRISMA. Four hundred forty-nine abstracts of papers were reviewed and scored independently by two out of six authors. Based on those papers we analyzed associations between biomarkers, subcompartments within the tumor lesion, and clinical outcomes. From all the articles analyzed, the twenty-seven papers with the highest scores were highlighted to represent the evidence about MR imaging biomarkers associated with clinical outcomes. Similarly, eighteen studies defining subcompartments within the tumor region were also highlighted to represent the evidence of MR imaging biomarkers. Their reports were critically appraised according to the QUADAS-2 criteria. Results: It has been demonstrated that multi-parametric biomarkers are prepared for surrogating diagnosis, grading, segmentation, overall survival, progression-free survival, recurrence, molecular profiling and response to treatment in gliomas. Quantifications and radiomics features obtained from morphological exams (T1, T2, FLAIR, T1c), PWI (including DSC and DCE), diffusion (DWI, DTI) and chemical shift imaging (CSI) are the preferred MR biomarkers associated to clinical outcomes. Subcompartments relative to the peritumoral region, invasion, infiltration, proliferation, mass effect and pseudo flush, relapse compartments, gross tumor volumes, and high-risk regions have been defined to characterize the heterogeneity. For the majority of pairwise cooccurrences, we found no evidence to assert that observed co-occurrences were significantly different from their expected co-occurrences (Binomial test with False Discovery Rate correction, alpha=0.05). The co-occurrence among terms in the studied papers was found to be driven by their individual prevalence and trends in the literature. Conclusion: Combinations of MR imaging biomarkers from morphological, PWI, DWI and CSI exams have demonstrated their capability to predict clinical outcomes in different management moments of gliomas. Whereas morphologic-derived compartments have been mostly studied during the last ten years, new multi-parametric MRI approaches have also been proposed to discover specific subcompartments of the tumors. MR biomarkers from those subcompartments show the local behavior within the heterogeneous tumor and may quantify the prognosis and response to treatment of gliomas.This work was supported by the Spanish Ministry for Investigation, Development and Innovation project with identification number DPI2016-80054-R.Oltra-Sastre, M.; Fuster Garc√≠a, E.; Juan -Albarrac√≠n, J.; S√°ez Silvestre, C.; Perez-Girbes, A.; Sanz-Requena, R.; Revert-Ventura, A.... (2019). Multi-parametric MR Imaging Biomarkers Associated to Clinical Outcomes in Gliomas: A Systematic Review. Current Medical Imaging Reviews. 15(10):933-947. https://doi.org/10.2174/1573405615666190109100503S9339471510Louis D.N.; Perry A.; Reifenberger G.; The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 2016,131(6),803-820Ostrom Q.T.; Gittleman H.; Fulop J.; CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro-oncol 2015,17(Suppl. 4),iv1-iv62Yachida S.; Jones S.; Bozic I.; Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 2010,467(7319),1114-1117Gerlinger M.; Rowan A.J.; Horswell S.; Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012,366(10),883-892Sottoriva A.; Spiteri I.; Piccirillo S.G.M.; Intratumor heterogeneityin human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA 2013,110(10),4009-4014Whiting P.F.; Rutjes A.W.; Westwood M.E.; QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011,155(8),529-536Stupp R.; Mason W.P.; van den Bent M.J.; Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005,352(10),987-996Ponte K.F.; Berro D.H.; Collet S.; In vivo relationship between hypoxia and angiogenesis in human glioblastoma: a multimodal imaging study. J Nucl Med 2017,58(10),1574-1579Pope W.B.; Kim H.J.; Huo J.; Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. Radiology 2009,252(1),182-189M√∂r√©n L.; Bergenheim A.T.; Ghasimi S.; Br√§nnstr√∂m T.; Johansson M.; Antti H.; Metabolomic screening of tumor tissue and serum in glioma patients reveals diagnostic and prognostic information. Metabolites 2015,5(3),502-520Prager A.J.; Martinez N.; Beal K.; Omuro A.; Zhang Z.; Young R.J.; Diffusion and perfusion MRI to differentiate treatment-related changes including pseudoprogression from recurrent tumors in high-grade gliomas with histopathologic evidence. AJNR Am J Neuroradiol 2015,36(5),877-885Kickingereder P.; Burth S.; Wick A.; Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 2016,280(3),880-889Yoo R-E.; Choi S.H.; Cho H.R.; Tumor blood flow from arterial spin labeling perfusion MRI: a key parameter in distinguishing high-grade gliomas from primary cerebral lymphomas, and in predicting genetic biomarkers in high-grade gliomas. J Magn Reson Imaging 2013,38(4),852-860Liberman G.; Louzoun Y.; Aizenstein O.; Automatic multi-modal MR tissue classification for the assessment of response to bevacizumab in patients with glioblastoma. Eur J Radiol 2013,82(2),e87-e94Ramadan S.; Andronesi O.C.; Stanwell P.; Lin A.P.; Sorensen A.G.; Mountford C.E.; Use of in vivo two-dimensional MR spectroscopy to compare the biochemistry of the human brain to that of glioblastoma. Radiology 2011,259(2),540-549Xintao H.; Wong K.K.; Young G.S.; Guo L.; Wong S.T.; Support vector machine multi-parametric MRI identification of pseudoprogression from tumor recurrence in patients with resected glioblastoma. J Magn Reson Imaging 2011,33(2),296Ingrisch M.; Schneider M.J.; N√∂renberg D.; Radiomic Analysis reveals prognostic information in T1-weighted baseline magnetic resonance imaging in patients with glioblastoma. Invest Radiol 2017,52(6),360-366Ulyte A.; Katsaros V.K.; Liouta E.; Prognostic value of preoperative dynamic contrast-enhanced MRI perfusion parameters for high-grade glioma patients. Neuroradiology 2016,58(12),1197-1208O‚ÄôNeill A.F.; Qin L.; Wen P.Y.; de Groot J.F.; Van den Abbeele A.D.; Yap J.T.; Demonstration of DCE-MRI as an early pharmacodynamic biomarker of response to VEGF Trap in glioblastoma. J Neurooncol 2016,130(3),495-503Kickingereder P.; Bonekamp D.; Nowosielski M.; Radiogenomics of glioblastoma: machine learning-based classification of molecular characteristics by using multiparametric and multiregional mr imaging features. Radiology 2016,281(3),907-918Roberto S-R.; Antonio R-V.; Luis M-B.; Angel A-B.; Graci√°n G-M.; Quantitative mr perfusion parameters related to survival time in high-grade gliomas. European Radiology 2013,23(12),3456-3465Jain R.; Poisson L.; Narang J.; Genomic mapping and survival prediction in glioblastoma: molecular subclassification strengthened by hemodynamic imaging biomarkers. Radiology 2013,267(1),212-220Fathi K.A.; Mohseni M.; Rezaei S.; Bakhshandehpour G.; Saligheh R.H.; Multi-parametric (ADC/PWI/T2-W) image fusion approach for accurate semi-automatic segmentation of tumorous regions in glioblastoma multiforme. MAGMA 2015,28(1),13-22Caulo M.; Panara V.; Tortora D.; Data-driven grading of brain gliomas: a multiparametric MR imaging study. Radiology 2014,272(2),494-503Alexiou G.A.; Zikou A.; Tsiouris S.; Comparison of diffusion tensor, dynamic susceptibility contrast MRI and (99m)Tc-Tetrofosmin brain SPECT for the detection of recurrent high-grade glioma. Magn Reson Imaging 2014,32(7),854-859Van Cauter S.; De Keyzer F.; Sima D.M.; Integrating diffusion kurtosis imaging, dynamic susceptibility-weighted contrast-enhanced MRI, and short echo time chemical shift imaging for grading gliomas. Neuro-oncol 2014,16(7),1010-1021Seeger A.; Braun C.; Skardelly M.; Comparison of three different MR perfusion techniques and MR spectroscopy for multiparametric assessment in distinguishing recurrent high-grade gliomas from stable disease. Acad Radiol 2013,20(12),1557-1565Chawalparit O.; Sangruchi T.; Witthiwej T.; Diagnostic performance of advanced mri in differentiating high-grade from low-grade gliomas in a setting of routine service. J Med Assoc Thai 2013,96(10),1365-1373Li Y.; Lupo J.M.; Parvataneni R.; Survival analysis in patients with newly diagnosed glioblastoma using pre- and postradiotherapy MR spectroscopic imaging. Neuro-oncol 2013,15(5),607-617Shankar J.J.S.; Woulfe J.; Silva V.D.; Nguyen T.B.; Evaluation of perfusion CT in grading and prognostication of high-grade gliomas at diagnosis: a pilot study. AJR Am J Roentgenol 2013,200(5)Zinn P.O.; Mahajan B.; Sathyan P.; Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS One 2011,6(10)Matsusue E.; Fink J.R.; Rockhill J.K.; Ogawa T.; Maravilla K.R.; Distinction between glioma progression and post-radiation change by combined physiologic MR imaging. Neuroradiology 2010,52(4),297-306Juan-Albarrac√≠n J.; Fuster-Garcia E.; Manj√≥n J.V.; Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification. PLoS One 2015,10(5)Itakura H.; Achrol A.S.; Mitchell L.A.; Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities. Sci Transl Med 2015,7(303)Ion-Margineanu A.; Van Cauter S.; Sima D.M.; Tumour relapse prediction using multiparametric MR data recorded during follow-up of GBM patients. BioMed Res Int 2015,2015Durst C.R.; Raghavan P.; Shaffrey M.E.; Multimodal MR imaging model to predict tumor infiltration in patients with gliomas. Neuroradiology 2014,56(2),107-115Yoon J.H.; Kim J.H.; Kang W.J.; Grading of cerebral glioma with multi-parametric MR Imaging and 18F-FDG-PET: concordance and accuracy. European Radiol 2014,24(2),380-389Demerath T.; Simon-Gabriel C.P.; Kellner E.; Mesoscopic imaging of glioblastomas: are diffusion, perfusion and spectroscopic measures influenced by the radiogenetic phenotype? Neuroradiol J 2017,30(1),36-47Qin L.; Li X.; Stroiney A.; Advanced MRI assessment to predict benefit of anti-programmed cell death 1 protein immunotherapy response in patients with recurrent glioblastoma. Neuroradiology 2017,59(2),135-145Boult J.K.R.; Borri M.; Jury A.; Investigating intracranial tumour growth patterns with multiparametric MRI incorporating Gd-DTPA and USPIO-enhanced imaging. NMR Biomed 2016,29(11),1608-1617Server A.; Kulle B.; Gadmar √ė.B.; Josefsen R.; Kumar T.; Nakstad P.H.; Measurements of diagnostic examination performance using quantitative apparent diffusion coefficient and proton MR spectroscopic imaging in the preoperative evaluation of tumor grade in cerebral gliomas. Eur J Radiol 2011,80(2),462-470Chang P.D.; Chow D.S.; Yang P.H.; Filippi C.G.; Lignelli A.; Predicting glioblastoma recurrence by early changes in the apparent diffusion coefficient value and signal intensity on FLAIR images. AJR Am J Roentgenol 2017,208(1),57-65Yi C.; Shangjie R.; Volume of high-risk intratumoralsubregions at multi-parametric MR imaging predicts overall survival and complements molecular analysis of glioblastoma. Eur Radiol 2017,27,3583-3592Khalifa J.; Tensaouti F.; Chaltiel L.; Identification of a candidate biomarker from perfusion MRI to anticipate glioblastoma progression after chemoradiation. Eur Radiol 2016,26(11),4194-4203Prateek P.; Jay P.; Partovi S.; Madabhushi A.; Tiwari P.; Radiomic features from the peritumoral brain parenchyma on treatment-na√Įve multi-parametric MR imaging predict long versus short-term survival in glioblastomamultiforme: preliminary findings. Eur Radiol 2017,27(10),4188-4197Lemasson B.; Chenevert T.L.; Lawrence T.S.; Impact of perfusion map analysis on early survival prediction accuracy in glioma patients. Transl Oncol 2013,6(6),766-774Inano R.; Oishi N.; Kunieda T.; Visualization of heterogeneity and regional grading of gliomas by multiple features using magnetic resonance-based clustered images. Sci Rep 2016,6,30344Delgado-Go√Īi T.; Ortega-Martorell S.; Ciezka M.; MRSI-based molecular imaging of therapy response to temozolomide in preclinical glioblastoma using source analysis. NMR Biomed 2016,29(6),732-743Cui Y.; Tha K.K.; Terasaka S.; Prognostic imaging biomarkers in glioblastoma: development and independent validation on the basis of multiregion and quantitative analysis of MR images. Radiology 2016,278(2),546-553Price S.J.; Young A.M.H.; Scotton W.J.; Multimodal MRI can identify perfusion and metabolic changes in the invasive margin of glioblastomas. J Magn Reson Imaging 2016,43(2),487-494Sauwen N.; Acou M.; Van Cauter S.; Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI. Neuroimage Clin 2016,12,753-764Jena A.; Taneja S.; Gambhir A.; Glioma recurrence versus radiation necrosis: single-session multiparametric approach using simultaneous O-(2-18F-Fluoroethyl)-L-Tyrosine PET/MRI. Clin Nucl Med 2016,41(5),e228-e236Kim H.S.; Goh M.J.; Kim N.; Choi C.G.; Kim S.J.; Kim J.H.; Which combination of MR imaging modalities is best for predicting recurrent glioblastoma? Study of diagnostic accuracy and reproducibility. Radiology 2014,273(3),831-843Christoforidis G.A.; Yang M.; Abduljalil A.; ‚ÄúTumoral pseudoblush‚ÄĚ identified within gliomas at high-spatial-resolution ultrahigh-field-strength gradient-echo MR imaging corresponds to microvascularity at stereotactic biopsy. Radiology 2012,264(1),210-217Wang S.; Kim S.; Chawla S.; Differentiation between glioblastomas, solitary brain metastases, and primary cerebral lymphomas using diffusion tensor and dynamic susceptibility contrast-enhanced MR imaging. AJNR Am J Neuroradiol 2011,32(3),507-514Hanahan D.; Weinberg R.A.; Hallmarks of cancer: the next generation. Cell 2011,144(5),646-674Macdonald D.R.; Cascino T.L.; Schold S.C.; Cairncross J.G.; Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 1990,8(7),1277-1280Wen P.Y.; Macdonald D.R.; Reardon D.A.; Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 2010,28(11),1963-1972Sorensen A.G.; Batchelor T.T.; Wen P.Y.; Zhang W-T.; Jain R.K.; Response criteria for glioma. Nat Clin Pract Oncol 2008,5(11),634-644Rosenkrantz A.B.; Friedman K.; Chandarana H.; Current status of hybrid PET/MRI in oncologic imaging. AJR Am J Roentgenol 2016,206(1),162-172Castiglioni I.; Gallivanone F.; Canevari C.; Hybrid PET/MRI for In vivo imaging of cancer: current clinical experiences and recent advances. Curr Med Imaging 2016,12,106Mainta I.C.; Perani D.; Delattre B.M.A.; FDG PET/MR imaging in major neurocognitive disorders. Curr Alzheimer Res 2017,14,186-197Marner L.; Henriksen O.M.; Lundemann M.; Larsen V.A.; Law I.; Clinical PET/MRI in neurooncology: opportunities and challenges from a single-institution perspective. Clin Transl Imaging 2017,5(2),135-149R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2015. Available from: https://www.R-project.org
    • ‚Ķ