233 research outputs found

    Sex differences in brain homotopic co-activations: a meta-analytic study

    Get PDF
    An element of great interest in functional connectivity is ‚Äėhomotopic connectivity‚Äô (HC), namely the connectivity between two mirrored areas of the two hemispheres, mainly mediated by the fibers of the corpus callosum. Despite a long tradition of studying sexual dimorphism in the human brain, to our knowledge only one study has addressed the influence of sex on HC. We investigated the issue of homotopic co-activations in women and men using a coordinate-based meta-analytic method and data from the BrainMap database. A first unexpected observation was that the database was affected by a sex bias: women-only groups are investigated less often than men-only ones, and they are more often studied in certain domains such as emotion compared to men, and less in cognition. Implementing a series of sampling procedures to equalize the size and proportion of the datasets, our results indicated that females exhibit stronger interhemispheric co-activation than males, suggesting that the female brain is less lateralized and more integrated than that of males. In addition, males appear to show less intense but more extensive co-activation than females. Some local differences also appeared. In particular, it appears that primary motor and perceptual areas are more co-activated in males, in contrast to the opposite trend in the rest of the brain. This argues for a multidimensional view of sex brain differences and suggests that the issue should be approached with more complex models than previously thought. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00429-022-02572-0

    Seeking Overlapping Neuroanatomical Alterations between Dyslexia and Attention-Deficit/Hyperactivity Disorder: A Meta-Analytic Replication Study

    Get PDF
    The present work is a replication article based on the paper ‚ÄúAre there shared neural correlates between dyslexia and ADHD? A meta-analysis of voxel-based morphometry studies‚ÄĚ by McGrath and Stoodley (2019). In the original research, the authors used activation likelihood estimation (ALE), a technique to perform coordinate-based meta-analysis (CBMA), to investigate the existence of brain regions undergoing gray matter alteration in association with both attention-deficit/hyper-activity disorder (ADHD) and dyslexia. Here, the same voxel-based morphometry dataset was analyzed, while using the permutation-subject images version of signed differential mapping (PSI-SDM) in place of ALE. Overall, the replication converged with the original paper in showing a limited overlap between the two conditions. In particular, no significant effect was found for dyslexia, therefore precluding any form of comparison between the two disorders. The possible influences of biological sex, age, and medication status were also ruled out. Our findings are in line with literature about gray matter alteration associated with ADHD and dyslexia, often showing conflicting results. Therefore, although neuropsychological and clinical evidence suggest some convergence between ADHD and dyslexia, more future research is sorely needed to reach a consensus on the neuroimaging domain in terms of patterns of gray matter alteration

    Co-alteration Network Architecture of Major Depressive Disorder: A Multi-modal Neuroimaging Assessment of Large-scale Disease Effects

    No full text
    Major depressive disorder (MDD) exhibits diverse symptomology and neuroimaging studies report widespread disruption of key brain areas. Numerous theories underpinning the network degeneration hypothesis (NDH) posit that neuropsychiatric diseases selectively target brain areas via meaningful network mechanisms rather than as indistinct disease effects. The present study tests the hypothesis that MDD is a network-based disorder, both structurally and functionally. Coordinate-based meta-analysis and Activation Likelihood Estimation (CBMA-ALE) were used to assess the convergence of findings from 92 previously published studies in depression. An extension of CBMA-ALE was then used to generate a node-and-edge network model representing the co-alteration of brain areas impacted by MDD. Standardized measures of graph theoretical network architecture were assessed. Co-alteration patterns among the meta-analytic MDD nodes were then tested in independent, clinical T1-weighted structural magnetic resonance imaging (MRI) and resting-state functional (rs-fMRI) data. Differences in co-alteration profiles between MDD patients and healthy controls, as well as between controls and clinical subgroups of MDD patients, were assessed. A 65-node 144-edge co-alteration network model was derived for MDD. Testing of co-alteration profiles in replication data using the MDD nodes provided distinction between MDD and healthy controls in structural data. However, co-alteration profiles were not distinguished between patients and controls in rs-fMRI data. Improved distinction between patients and healthy controls was observed in clinically homogenous MDD subgroups in T1 data. MDD abnormalities demonstrated both structural and functional network architecture, though only structural networks exhibited between-groups differences. Our findings suggest improved utility of structural co-alteration networks for ongoing biomarker development
    • ‚Ķ
    corecore