3,659 research outputs found

    The Rachel Carson Letters and the Making of Silent Spring

    Get PDF
    Environment, conservation, green, and kindred movements look back to Rachel Carson’s 1962 book Silent Spring as a milestone. The impact of the book, including on government, industry, and civil society, was immediate and substantial, and has been extensively described; however, the provenance of the book has been less thoroughly examined. Using Carson’s personal correspondence, this paper reveals that the primary source for Carson’s book was the extensive evidence and contacts compiled by two biodynamic farmers, Marjorie Spock and Mary T. Richards, of Long Island, New York. Their evidence was compiled for a suite of legal actions (1957-1960) against the U.S. Government and that contested the aerial spraying of dichlorodiphenyltrichloroethane (DDT). During Rudolf Steiner’s lifetime, Spock and Richards both studied at Steiner’s Goetheanum, the headquarters of Anthroposophy, located in Dornach, Switzerland. Spock and Richards were prominent U.S. anthroposophists, and established a biodynamic farm under the tutelage of the leading biodynamics exponent of the time, Dr. Ehrenfried Pfeiffer. When their property was under threat from a government program of DDT spraying, they brought their case, eventually lost it, in the process spent US$100,000, and compiled the evidence that they then shared with Carson, who used it, and their extensive contacts and the trial transcripts, as the primary input for Silent Spring. Carson attributed to Spock, Richards, and Pfeiffer, no credit whatsoever in her book. As a consequence, the organics movement has not received the recognition, that is its due, as the primary impulse for Silent Spring, and it is, itself, unaware of this provenance

    Universality of Cluster Dynamics

    Full text link
    We have studied the kinetics of cluster formation for dynamical systems of dimensions up to n=8n=8 interacting through elastic collisions or coalescence. These systems could serve as possible models for gas kinetics, polymerization and self-assembly. In the case of elastic collisions, we found that the cluster size probability distribution undergoes a phase transition at a critical time which can be predicted from the average time between collisions. This enables forecasting of rare events based on limited statistical sampling of the collision dynamics over short time windows. The analysis was extended to Lp^p-normed spaces (p=1,...,p=1,...,\infty) to allow for some amount of interpenetration or volume exclusion. The results for the elastic collisions are consistent with previously published low-dimensional results in that a power law is observed for the empirical cluster size distribution at the critical time. We found that the same power law also exists for all dimensions n=2,...,8n=2,...,8, 2D Lp^p norms, and even for coalescing collisions in 2D. This broad universality in behavior may be indicative of a more fundamental process governing the growth of clusters

    Novel use of stir bar sorptive extraction (SBSE) as a tool for isolation of oviposition site attractants for gravid Culex quinquefasciatus

    Get PDF
    Mosquitoes such as Culex quinquefasciatus Say (Diptera: Culicidae) are important vectors of organisms that cause disease in humans. Research into the development of effective standardized odour baits for blood-fed females (oviposition attractants), to enable entomological monitoring of vector populations, is hampered by complex protocols for extraction of physiologically active volatile chemicals from natural breeding site water samples, which have produced inconsistent results. Air entrainment and solvent extraction are technically demanding methods and are impractical for use in resource poor environments where mosquito-borne disease is most prevalent. This study reports the first use of a simple, robust extraction technique, stir bar sorptive extraction (SBSE), to extract behaviourally active small lipophilic molecules (SLMs) present in water samples collected from Cx. quinquefasciatus breeding sites in Tanzania. Extracts from a pit latrine and from a cess pool breeding site attracted more gravid Cx. quinquefasciatus in pair choice bioassays than control extracts, and coupled gas chromatography-electroantennography (GC-EAG) allowed tentative identification of 15 electrophysiologically active chemicals, including the known oviposition attractant, skatole (3-methylindole). Here, we have demonstrated, using simple pair choice bioassays in controlled laboratory conditions, that SBSE is effective for the extraction of behaviourally and electrophysiologically active semiochemicals from mosquito breeding site waters. Further research is required to confirm that SBSE is an appropriate technique for use in field surveys in the search for oviposition cues for Cx. quinquefasciatus

    In vivo imaging of D\u3csub\u3e2\u3c/sub\u3e receptors and corticosteroids predict behavioural responses to captivity stress in a wild bird

    Get PDF
    © 2019, The Author(s). Individual physiological variation may underlie individual differences in behaviour in response to stressors. This study tested the hypothesis that individual variation in dopamine and corticosteroid physiology in wild house sparrows (Passer domesticus, n = 15) would significantly predict behaviour and weight loss in response to a long-term stressor, captivity. We found that individuals that coped better with captivity (fewer anxiety-related behaviours, more time spent feeding, higher body mass) had lower baseline and higher stress-induced corticosteroid titres at capture. Birds with higher striatal D2 receptor binding (examined using positron emission tomography (PET) with 11C-raclopride 24 h post-capture) spent more time feeding in captivity, but weighed less, than birds with lower D2 receptor binding. In the subset of individuals imaged a second time, D2 receptor binding decreased in captivity in moulting birds, and larger D2 decreases were associated with increased anxiety behaviours 2 and 4 weeks post-capture. This suggests changes in dopaminergic systems could be one physiological mechanism underlying negative behavioural effects of chronic stress. Non-invasive technologies like PET have the potential to transform our understanding of links between individual variation in physiology and behaviour and elucidate which neuroendocrine phenotypes predict stress resilience, a question with important implications for both humans and wildlife
    corecore