48 research outputs found

    Clinical Relevance of State-of-the-Art Analysis of Surface Electromyography in Cerebral Palsy

    Get PDF
    Surface electromyography (sEMG) can be used to assess the integrity of the neuromuscular system and its impairment in neurological disorders. Here we will consider several issues related to the current clinical applications, difficulties and limited usage of sEMG for the assessment and rehabilitation of children with cerebral palsy. The uniqueness of this methodology is that it can determine hyperactivity or inactivity of selected muscles, which cannot be assessed by other methods. In addition, it can assist for intervention or muscle/tendon surgery acts, and it can evaluate integrated functioning of the nervous system based on multi-muscle sEMG recordings and assess motor pool activation. The latter aspect is especially important for understanding impairments of the mechanisms of neural controllers rather than malfunction of individual muscles. Although sEMG study is an important tool in both clinical research and neurorehabilitation, the results of a survey on the clinical relevance of sEMG in a typical department of pediatric rehabilitation highlighted its limited clinical usage. We believe that this is due to limited knowledge of the sEMG and its neuromuscular underpinnings by many physiotherapists, as a result of lack of emphasis on this important methodology in the courses taught in physical therapy schools. The lack of reference databases or benchmarking software for sEMG analysis may also contribute to the limited clinical usage. Despite the existence of educational and technical barriers to a widespread use of, sEMG does provide important tools for planning and assessment of rehabilitation treatments for children with cerebral palsy

    Evaluation of Spatiotemporal Patterns of the Spinal Muscle Coordination Output during Walking in the Exoskeleton

    Get PDF
    Recent advances in the performance and evaluation of walking in exoskeletons use various assessments based on kinematic/kinetic measurements. While such variables provide general characteristics of gait performance, only limited conclusions can be made about the neural control strategies. Moreover, some kinematic or kinetic parameters are a consequence of the control implemented on the exoskeleton. Therefore, standard indicators based on kinematic variables have limitations and need to be complemented by performance measures of muscle coordination and control strategy. Knowledge about what happens at the spinal cord output level might also be critical for rehabilitation since an abnormal spatiotemporal integration of activity in specific spinal segments may result in a risk for abnormalities in gait recovery. Here we present the PEPATO software, which is a benchmarking solution to assess changes in the spinal locomotor output during walking in the exoskeleton with respect to reference data on normal walking. In particular, functional and structural changes at the spinal cord level can be mapped into muscle synergies and spinal maps of motoneuron activity. A user-friendly software interface guides the user through several data processing steps leading to a set of performance indicators as output. We present an example of the usage of this software for evaluating walking in an unloading exoskeleton that allows a person to step in simulated reduced (the Moon's) gravity. By analyzing the EMG activity from lower limb muscles, the algorithms detected several performance indicators demonstrating differential adaptation (shifts in the center of activity, prolonged activation) of specific muscle activation modules and spinal motor pools and increased coactivation of lumbar and sacral segments. The software is integrated at EUROBENCH facilities to benchmark the performance of walking in the exoskeleton from the point of view of changes in the spinal locomotor output

    Immature Spinal Locomotor Output in Children with Cerebral Palsy

    Get PDF
    Cappellini G, P. Ivanenko Y, Martino G, et al. Immature Spinal Locomotor Output in Children with Cerebral Palsy. Frontiers in Physiology. 2016;7:478

    Complexity of modular neuromuscular control increases and variability decreases during human locomotor development

    Get PDF
    When does modular control of locomotion emerge during human development? One view is that modularity is not innate, being learnt over several months of experience. Alternatively, the basic motor modules are present at birth, but are subsequently reconfigured due to changing brain-body-environment interactions. One problem in identifying modular structures in stepping infants is the presence of noise. Here, using both simulated and experimental muscle activity data from stepping neonates, infants, preschoolers, and adults, we dissect the influence of noise, and identify modular structures in all individuals, including neonates. Complexity of modularity increases from the neonatal stage to adulthood at multiple levels of the motor infrastructure, from the intrinsic rhythmicity measured at the level of individual muscles activities, to the level of muscle synergies and of bilateral intermuscular network connectivity. Low complexity and high variability of neuromuscular signals attest neonatal immaturity, but they also involve potential benefits for learning locomotor tasks

    Adjustments in the range of angular motion during walking after amputation of the toes: a case report

    Get PDF
    The forefoot plays an important role in providing body support and propulsion during walking. We investigated the effect of forefoot dysfunction on the gait pattern of a young adult with partial bilateral amputation of the toes. We measured our participant’s gait kinematics during barefoot and shod overground walking and analysed time-distance and joint range of motion (RoM) parameters against a group of healthy adults. Forefoot dysfunction gait is improved by footwear and walking experience; however, this improvement was still remarkably different (exceeded 95% CI) when compared to healthy gait at matching walking speed. Compared to healthy gait, walking barefoot had a slower speed and a 30% reduction in ankle and knee joint RoM, but a larger hip RoM. Shod gait resulted in a remarkable increase in ankle RoM and walking speed compared to barefoot gait. These results are consistent with the important role of the forefoot (tarsals and metatarsophalangeal joints) and suggest that footwear can facilitate gait function following toe amputation

    G6PD testing in support of treatment and elimination of malaria: recommendations for evaluation of G6PD tests

    Get PDF
    Malaria elimination will be possible only with serious attempts to address asymptomatic infection and chronic infection by both Plasmodium falciparum and Plasmodium vivax. Currently available drugs that can completely clear a human of P. vivax (known as “radical cure”), and that can reduce transmission of malaria parasites, are those in the 8-aminoquinoline drug family, such as primaquine. Unfortunately, people with glucose-6-phosphate dehydrogenase (G6PD) deficiency risk having severe adverse reactions if exposed to these drugs at certain doses. G6PD deficiency is the most common human enzyme defect, affecting approximately 400 million people worldwide. Scaling up radical cure regimens will require testing for G6PD deficiency, at two levels: 1) the individual level to ensure safe case management, and 2) the population level to understand the risk in the local population to guide Plasmodium vivax treatment policy. Several technical and operational knowledge gaps must be addressed to expand access to G6PD deficiency testing and to ensure that a patient’s G6PD status is known before deciding to administer an 8-aminoquinoline-based drug. In this report from a stakeholder meeting held in Thailand on October 4 and 5, 2012, G6PD testing in support of radical cure is discussed in detail. The focus is on challenges to the development and evaluation of G6PD diagnostic tests, and on challenges related to the operational aspects of implementing G6PD testing in support of radical cure. The report also describes recommendations for evaluation of diagnostic tests for G6PD deficiency in support of radical cure
    corecore