753 research outputs found

    TinyML for UWB-radar based presence detection

    Get PDF
    Tiny Machine Learning (TinyML) is a novel research area aiming at designing machine and deep learning models and algorithms able to be executed on tiny devices such as Internet-of-Things units, edge devices or embedded systems. In this paper we introduce, for the first time in the literature, a TinyML solution for presence-detection based on UltrawideBand (UWB) radar, which is a particularly promising radar technology for pervasive systems. To achieve this goal we introduce a novel family of tiny convolutional neural networks for the processing of UWB-radar data characterized by a reduced memory footprint and computational demand so as to satisfy the severe technological constraints of tiny devices. From this technological perspective, UWB-radars are particularly relevant in the presence-detection scenario since they do not acquire sensitive information of users (e.g., images, videos or audio), hence preserving their privacy.The proposed solution has been successfully tested on a public-available benchmark for the indoor presence detection and on a real-world application of in-car presence detection

    Coupled Use of COSPEC and Satellite Measurements to define the Volumetric Balance During Effusive Eruptions at Mt. Etna, Italy

    Get PDF
    Mt. Etna is one of the most studied and extensively monitored volcanoes on earth (Bonaccorso et al., 2004). One of the most frequent hazards are due to the eruption of lava flows, more specifically those flows produced during flank eruptions. These eruptions potentially can produce extensive flows that can inundate densely populated communities of the lower slopes (Guest and Murray, 1979; Behncke et al., 2005). Satellite remote sensing can be used during effusive eruptions to help monitoring the volcano, by determining effusion rates of the flows, aiding in hazard management. The degassing that takes place when magma is rising to the surface can be regularly monitored using ultraviolet spectroscopic methods (e.g. Andres et al., 2001, Sutton et al., 2001). Sulfur Dioxide (SO2) fluxes have been derived from correlation spectrometer (COSPEC) measurements at Mt. Etna (Italy) on a regular basis since 1987 (e.g. Caltabiano et al., 1994; Allard, 1997; Andronico et al., 2005; Burton et al., 2005; Burton et al., in press). Previous studies have compared field-based effusion rates with the measured SO2 fluxes to determine how much of the degassed magma is erupted onto Etna’s flanks in the form of lava flows (Allard, 1997; Harris et al., 2000). However, most of these studies examine bulk volumes erupted over an eruption rather than examining the short-term variations during eruptions. Determining the amount of lava erupted and/or the balance between the amount supplied and the amount erupted remains an unresolved issue. The main objectives of this paper are to examine such short-term variations using satellite-based effusion rates along with regularly measured SO2 fluxes. Using these measurements we determine how and when the volume of supplied magma is balanced by the volume of erupted lava during individual effusive eruptions

    New insights into volcanic processes at Stromboli from Cerberus, a remote-controlled open-path FTIR scanner system

    Get PDF
    The ordinary, low intensity, activity of Stromboli volcano is sporadically interrupted by more energetic events termed, depending on their intensity, “major explosions” and “paroxysms”. These short-lived energetic episodes represent a potential risk to visitors to the highly accessible summit of Stromboli. Observations made at Stromboli over the last decade have shown that the composition of gas emitted from the summit craters may change prior to such explosions, allowing the possibility that such changes may be used to forecast these potentially dangerous events. In 2008 we installed a novel, remote-controlled, open-path FTIR scanning system called Cerberus at the summit of Stromboli, with the objective of measuring gas compositions from individual vents within the summit crater terrace of the volcano with high temporal resolution and for extended periods. In this work we report the first results from the Cerberus system, collected in August-September 2009, November 2009 and May-June 2010. We find significant, fairly consistent, intra-crater variability for CO2/SO2 and H2O/CO2 ratios, and relatively homogeneous SO2/HCl ratios. In general, the southwest crater is richest in CO2, and the northeast crater poorest, while the central crater is richest in H2O. It thus appears that during the measurement period the southwest crater had a somewhat more direct connection to a primary, deep degassing system; whilst the central and northeast craters reflect a slightly more secondary degassing nature, with a supplementary, shallow H2O source for the central crater, probably related to puffing activity. Such water-rich emissions from the central crater can account for the lower crystal content of its eruption products, and emphasise the role of continual magma supply to the shallowest levels of Stromboli's plumbing system. Our observations of heterogeneous crater gas emissions and high H2O/CO2 ratios do not agree with models of CO2-flushing, and we show that simple depressurisation during magma ascent to the surface is a more likely model for H2O loss at Stromboli. We highlight that alternative explanations other than CO2 flushing are required to explain distributions of H2O and CO2 amounts dissolved in melt inclusions. We detected fairly systematic increases in CO2/SO2 ratio some weeks prior to major explosions, and some evidence of a decrease in this ratio in the days immediately preceding the explosions, with periods of low, stable CO2/SO2 ratios between explosions otherwise. Our measurements, therefore, confirm the medium term (~ weeks) precursory increases previously observed with MultiGas instruments, and, in addition, reveal new, short-term precursory decreases in CO2/SO2 ratios. immediately prior to the major explosions. Such patterns, if shown to be systematic, may be of great utility for hazard management at Stromboli's summit. Our results suggest that intra-crater CO2/SO2 variability may produce short-term peaks and troughs in CO2/SO2 time series measured with in-situ MultiGas instruments, due simply to variations in wind direction

    Optimization of RPCs read-out panel with electromagnetic simulation

    Full text link
    With the upgrade of the RPCs [1]-[2] and the increase of its performances, the study and the optimization of the read-out panel is necessary in order to maintain the signal integrity and to reduce the intrinsic crosstalk. Through Electromagnetic Simulation, performed with CST Studio Suite, new panels design are tested and their crosstalk property are studied. The behavior of different type of panel is shown, in particular a panel with the decoupling strip connected through their characteristic impedance to the ground plane is simulated

    Current molecular and clinical insights into uveal melanoma (Review)

    Get PDF
    Uveal melanoma (UM) represents the most prominent primary eye cancer in adults. With an incidence of approximately 5 cases per million individuals annually in the United States, UM could be considered a relatively rare cancer. The 90.95% of UM cases arise from the choroid. Diagnosis is based mainly on a clinical examination and ancillary tests, with ocular ultrasonography being of greatest value. Differential diagnosis can prove challenging in the case of indeterminate choroidal lesions and, sometimes, monitoring for documented growth may be the proper approach. Fine needle aspiration biopsy tends to be performed with a prognostic purpose, often in combination with radiotherapy. Gene expression profiling has allowed for the grading of UMs into two classes, which feature different metastatic risks. Patients with UM require a specialized multidisciplinary management. Primary tumor treatment can be either enucleation or globe preserving. Usually, enucleation is reserved for larger tumors, while radiotherapy is preferred for small/medium melanomas. The prognosis is unfavorable due to the high mortality rate and high tendency to metastasize. Following the development of metastatic disease, the mortality rate increases to 80% within one year, due to both the absence of an effective treatment and the aggressiveness of the condition. Novel molecular studies have allowed for a better understanding of the genetic and epigenetic mechanisms involved in UM biological activity, which differs compared to skin melanomas. The most commonly mutated genes are GNAQ, GNA11 and BAP1. Research in this field could help to identify effective diagnostic and prognostic biomarkers, as well as novel therapeutic targets

    First observational evidence for the CO2-driven origin of Stromboli’s major explosions

    Get PDF
    We report on the first detection of CO2 flux precursors of the till now unforecastable “major” explosions that intermittently occur at Strombolivolcano (Italy). An automated survey of the crater plume emissions in the period 2006–2010, during which 12 such explosions happened, demonstrated that these events are systematically preceded by a brief phase of increasing CO2/SO2 weight ratio (up to >40) and CO2 flux (>1300 t d−1) with respect to the timeaveraged values of 3.7 and 500 t d−1 typical for standard Stromboli’s activity. These signals are best explained by the accumulation of CO2-rich gas at a discontinuity of the plumbing system (decreasing CO2 emission at the surface), followed by increasing gas leakage prior to the explosion. Our observations thus supports the recent model of Allard (2010) for a CO2-rich gas trigger of recurrent major explosions at Stromboli, and demonstrates the possibility to forecast these events in advance from geochemical precursors. These observations and conclusions have clear implications for monitoring strategies at other open-vent basaltic volcanoes worldwide
    • 

    corecore