3,260 research outputs found

    Estimating induced-activation of SCT barrel-modules

    Get PDF

    Gluon-induced W-boson pair production at the LHC

    Get PDF
    Pair production of W bosons constitutes an important background to Higgs boson and new physics searches at the Large Hadron Collider LHC. We have calculated the loop-induced gluon-fusion process gg -> W*W* -> leptons, including intermediate light and heavy quarks and allowing for arbitrary invariant masses of the W bosons. While formally of next-to-next-to-leading order, the gg -> W*W* -> leptons process is enhanced by the large gluon flux at the LHC and by experimental Higgs search cuts, and increases the next-to-leading order WW background estimate for Higgs searches by about 30%. We have extended our previous calculation to include the contribution from the intermediate top-bottom massive quark loop and the Higgs signal process. We provide updated results for cross sections and differential distributions and study the interference between the different gluon scattering contributions. We describe important analytical and numerical aspects of our calculation and present the public GG2WW event generator.Comment: 20 pages, 4 figure

    Higgs Discovery through Top-Partners using Jet Substructure

    Full text link
    Top-partners -- vector-like quarks which mix predominantly with the top quark -- are simple extensions of the standard model present in many theories of new physics such as little Higgs models, topcolor models, and extra dimensions. Through renormalizable mixing with the top quark, these top-partners inherit couplings to the Higgs boson. Higgs bosons produced from the decay of top-partners are often highly boosted and ideal candidates for analyses based on jet substructure. Using substructure methods, we show that light Higgs bosons decaying to b b-bar can be discovered at the 14 TeV LHC with less than 10 inverse fb for top-partner masses up to 1 TeV.Comment: 11 pages, 7 figure

    Next-to-leading order predictions for WW + 1 jet distributions at the LHC

    Get PDF
    We present numerical results for the production of a W+WW^+W^- pair in association with a jet at the LHC in QCD at next-to-leading order (NLO). We include effects of the decay of the massive vector bosons into leptons with spin correlations and contributions from the third generation of massive quarks. The calculation is performed using a semi-numerical method for the virtual corrections, and is implemented in MCFM. In addition to its importance {\it per se} as a test of the Standard Model, this process is an important background to searches for the Higgs boson and to many new physics searches. As an example, we study the impact of NLO corrections to W+W+W^+W^-+ jet production on the search for a Higgs boson at the LHC.Comment: 21 pages, 9 figures; v3 published versio

    Radiation Hardness Studies in a CCD with High-Speed Column Parallel Readout

    Full text link
    Charge Coupled Devices (CCDs) have been successfully used in several high energy physics experiments over the past two decades. Their high spatial resolution and thin sensitive layers make them an excellent tool for studying short-lived particles. The Linear Collider Flavour Identification (LCFI) collaboration is developing Column-Parallel CCDs (CPCCDs) for the vertex detector of the International Linear Collider (ILC). The CPCCDs can be read out many times faster than standard CCDs, significantly increasing their operating speed. The results of detailed simulations of the charge transfer inefficiency (CTI) of a prototype CPCCD are reported and studies of the influence of gate voltage on the CTI described. The effects of bulk radiation damage on the CTI of a CPCCD are studied by simulating the effects of two electron trap levels, 0.17 and 0.44 eV, at different concentrations and operating temperatures. The dependence of the CTI on different occupancy levels (percentage of hit pixels) and readout frequencies is also studied. The optimal operating temperature for the CPCCD, where the effects of the charge trapping are at a minimum, is found to be about 230 K for the range of readout speeds proposed for the ILC. The results of the full simulation have been compared with a simple analytic model.Comment: 3 pages, 6 figures; presented at IEEE'07, ALCPG'07, ICATPP'0

    Prospects for the Search for a Standard Model Higgs Boson in ATLAS using Vector Boson Fusion

    Full text link
    The potential for the discovery of a Standard Model Higgs boson in the mass range m_H < 2 m_Z in the vector boson fusion mode has been studied for the ATLAS experiment at the LHC. The characteristic signatures of additional jets in the forward regions of the detector and of low jet activity in the central region allow for an efficient background rejection. Analyses for the H -> WW and H -> tau tau decay modes have been performed using a realistic simulation of the expected detector performance. The results obtained demonstrate the large discovery potential in the H -> WW decay channel and the sensitivity to Higgs boson decays into tau-pairs in the low-mass region around 120 GeV.Comment: 20 pages, 13 ps figures, uses EPJ style fil

    Radiation-hard active pixel sensors for HL-LHC detector upgrades based on HV-CMOS technology

    Get PDF
    Luminosity upgrades are discussed for the LHC (HL-LHC) which would make updates to the detectors necessary, requiring in particular new, even more radiation-hard and granular, sensors for the inner detector region. A proposal for the next generation of inner detectors is based on HV-CMOS: a new family of silicon sensors based on commercial high-voltage CMOS technology, which enables the fabrication of part of the pixel electronics inside the silicon substrate itself. The main advantages of this technology with respect to the standard silicon sensor technology are: low material budget, fast charge collection time, high radiation tolerance, low cost and operation at room temperature. A traditional readout chip is still needed to receive and organize the data from the active sensor and to handle high-level functionality such as trigger management. HV-CMOS has been designed to be compatible with both pixel and strip readout. In this paper an overview of HV2FEI4, a HV-CMOS prototype in 180 nm AMS technology, will be given. Preliminary results after neutron and X-ray irradiation are shown

    HV/HR-CMOS sensors for the ATLAS upgrade—concepts and test chip results

    Get PDF
    In order to extend its discovery potential, the Large Hadron Collider (LHC) will have a major upgrade (Phase II Upgrade) scheduled for 2022. The LHC after the upgrade, called High-Luminosity LHC (HL-LHC), will operate at a nominal leveled instantaneous luminosity of 5× 1034 cm−2 s−1, more than twice the expected Phase I . The new Inner Tracker needs to cope with this extremely high luminosity. Therefore it requires higher granularity, reduced material budget and increased radiation hardness of all components. A new pixel detector based on High Voltage CMOS (HVCMOS) technology targeting the upgraded ATLAS pixel detector is under study. The main advantages of the HVCMOS technology are its potential for low material budget, use of possible cheaper interconnection technologies, reduced pixel size and lower cost with respect to traditional hybrid pixel detector. Several first prototypes were produced and characterized within ATLAS upgrade R&#38;D effort, to explore the performance and radiation hardness of this technology. In this paper, an overview of the HVCMOS sensor concepts is given. Laboratory tests and irradiation tests of two technologies, HVCMOS AMS and HVCMOS GF, are also given

    On the phenomenology of a two-Higgs-doublet model with maximal CP symmetry at the LHC

    Full text link
    Predictions for LHC physics are worked out for a two-Higgs-doublet model having four generalized CP symmetries. In this maximally-CP-symmetric model (MCPM) the first fermion family is, at tree level, uncoupled to the Higgs fields and thus massless. The second and third fermion families have a very symmetric coupling to the Higgs fields. But through the electroweak symmetry breaking a large mass hierarchy is generated between these fermion families. Thus, the fermion mass spectrum of the model presents a rough approximation to what is observed in Nature. In the MCPM there are, as in every two-Higgs-doublet model, five physical Higgs bosons, three neutral ones and a charged pair. In the MCPM the couplings of the Higgs bosons to the fermions are completely fixed. This allows us to present clear predictions for the production at the LHC and for the decays of the physical Higgs bosons. As salient feature we find rather large cross sections for Higgs-boson production via Drell-Yan type processes. With experiments at the LHC it should be possible to check these predictions.Comment: 17 pages, 14 figures, some clarifications added, typos correcte

    Precision electroweak calculation of the production of a high transverse-momentum lepton pair at hadron colliders

    Get PDF
    We present a detailed study of the production of a high transverse-momentum lepton pair at hadron colliders, which includes the exact O(alpha) electroweak corrections properly matched with leading logarithmic effects due to multiple photon emission, as required by the experiments at the Fermilab Tevatron and the CERN LHC. Numerical results for the relevant observables of single Z-boson production at hadron colliders are presented. The impact of the radiative corrections is discussed in detail. The presence in the proton of a photon density is considered and the effects of the photon-induced partonic subprocesses are analyzed. The calculation has been implemented in the new version of the event generator HORACE, which is available for precision simulations of the neutral and charged current Drell-Yan processes.Comment: October 2007, 22p
    corecore