29,546 research outputs found

    Experience with Free Bodies

    Get PDF
    Some of the problems that confront an analyst in free body modeling, to satisfy rigid body conditions are discussed and with some remedies for these problems are presented. The problems of detecting these culprits at various levels within the analysis are examined. A new method within NASTRAN for checking the model for defects very early in the analysis without requiring the analyst to bear the expense of an eigenvalue analysis before discovering these defects is outlined

    Design Spectrum Analysis in NASTRAN

    Get PDF
    The utility of Design Spectrum Analysis is to give a mode by mode characterization of the behavior of a design under a given loading. The theory of design spectrum is discussed after operations are explained. User instructions are taken up here in three parts: Transient Preface, Maximum Envelope Spectrum, and RMS Average Spectrum followed by a Summary Table. A single DMAP ALTER packet will provide for all parts of the design spectrum operations. The starting point for getting a modal break-down of the response to acceleration loading is the Modal Transient rigid format. After eigenvalue extraction, modal vectors need to be isolated in the full set of physical coordinates (P-sized as opposed to the D-sized vectors in RF 12). After integration for transient response the results are scanned over the solution time interval for the peak values and for the times that they occur. A module called SCAN was written to do this job, that organizes these maxima into a diagonal output matrix. The maximum amplifier in each mode is applied to the eigenvector of each mode which then reveals the maximum displacements, stresses, forces and boundary reactions that the structure will experience for a load history, mode by mode. The standard NASTRAN output processors have been modified for this task. It is required that modes be normalized to mass

    Transients by substructuring with DMAP

    Get PDF
    Automated substructuring in level 16 of NASTRAN was employed as a preface to the solution of a direct transient analysis. The DMAP ALTER statements written to adapt the substructuring for transient purposes are explained. Data recovery was accomplished with transfer functions. Proof of the success of the method is presented with an application to a missile structure

    Test versus analysis: A discussion of methods

    Get PDF
    Some techniques for comparing structural vibration data determined from test and analysis are discussed. Orthogonality is a general category of one group, correlation is a second, synthesis is a third and matrix improvement is a fourth. Advantages and short-comings of the methods are explored with suggestions as to how they can complement one another. The purpose for comparing vibration data from test and analysis for a given structure is to find out whether each is representing the dynamic properties of the structure in the same way. Specifically, whether: mode shapes are alike; the frequencies of the modes are alike; modes appear in the same frequency sequence; and if they are not alike, how to judge which to believe

    Condensing loaded points for transients by substructuring

    Get PDF
    A technique for condensing dynamic loading points is described. The method was applied to substructure transient solutions and was found to be very effective

    Seismic Analysis Capability in NASTRAN

    Get PDF
    Seismic analysis is a technique which pertains to loading described in terms of boundary accelerations. Earthquake shocks to buildings is the type of excitation which usually comes to mind when one hears the word seismic, but this technique also applied to a broad class of acceleration excitations which are applied at the base of a structure such as vibration shaker testing or shocks to machinery foundations. Four different solution paths are available in NASTRAN for seismic analysis. They are: Direct Seismic Frequency Response, Direct Seismic Transient Response, Modal Seismic Frequency Response, and Modal Seismic Transient Response. This capability, at present, is invoked not as separate rigid formats, but as pre-packaged ALTER packets to existing RIGID Formats 8, 9, 11, and 12. These ALTER packets are included with the delivery of the NASTRAN program and are stored on the computer as a library of callable utilities. The user calls one of these utilities and merges it into the Executive Control Section of the data deck to perform any of the four options are invoked by setting parameter values in the bulk data

    NASTRAN - A summary of the functions and capabilities of the NASA structural analysis computer system

    Get PDF
    Description of general purpose digital computer program /NASTRAN/ for analysis of elastic structures under various loading conditions using finite element method approac

    Bubble vector in automatic merging

    Get PDF
    It is shown that it is within the capability of the DMAP language to build a set of vectors that can grow incrementally to be applied automatically and economically within a DMAP loop that serves to append sub-matrices that are generated within a loop to a core matrix. The method of constructing such vectors is explained

    Bolt in bore boundaries

    Get PDF
    The factors that must be taken into consideration when applying NASTRAN's linear analysis to structures whose principle boundaries are formed by bolting, and for which localized stress peaking is important are discussed. An illustration is given in an application to a mounting bracket

    Previously unpublished Odonata records from Sarawak, Borneo : part 2, Kubah National Park

    Get PDF
    Records of Odonata from Kubah National Park, near Kuching in west Sarawak, are presented. Eighty-five species are known from the national park. Notable records include Drepanosticta drusilla, Rhinocypha species cf spinifer, Bornagriolestes species, Anaciaeschna species and Macromidia genialis erratica
    • …
    corecore