5,113 research outputs found

    Xylella fastidiosa pil-chp operon is involved in regulating key structural genes of both type I and IV pili

    Get PDF
    Xylella fastidiosa is the causal agent of Pierce's disease (PD) in grapevines. It has type I and type IV pili, which are both virulence factors involved in the PD-associated processes of motility, aggregation, and biofilm formation. Many questions remain as to how the two pili are regulated. We previously identified a X. fastidiosa pil-chp chemosensory-like cluster as an operon composed of genes pilG-I-J-L-chpB-C. In this study, we deleted pilG (resulting in a ∆pilG-I strain) and pilJ and discovered that both mutants (∆pilG-I and ∆pilJ) had reduced virulence after 24 weeks post-inoculation, whereas ∆chpB and ∆chpC did not. Both ∆pilG-I and ∆pilJ lost motility and were impaired in biofilm formation in rich artificial media and xylem sap. Gene expression was significantly downregulated for representative fimbrial adhesin and motility genes in ∆pilG-I, and to a lesser extent in ∆pilJ. Our data suggest that Pil, but not Chp, proteins are virulence factors, and pilG-I-J are involved in transcriptional regulation of type I and IV pili virulence genes and therefore motility and biofilm formation. To our knowledge, this is the first report of a chemotaxis-like operon involved in the regulation of key structural genes of both type I and type IV pili

    Understanding the importance of the energetics of Mn, Ni, Cu, Si and vacancy triplet clusters in bcc Fe

    Get PDF
    Numerous experimental studies have found the presence of (Cu)-Ni-Mn-Si clusters in neutron irradiated reactor pressure vessel steels, prompting concerns that these clusters could lead to larger than expected increases in hardening, especially at high fluences late in life. The mechanics governing clustering for the Fe-Mn-Ni-Si system are not well-known; state-of-the-art methods use kinetic Monte Carlo (KMC) parameterised by density functional theory (DFT) and thermodynamic data to model the time evolution of clusters. However, DFT based KMC studies have so far been limited to only pairwise interactions due to lack of DFT data. Here we explicitly calculate the binding energy of triplet clusters of Mn, Ni, Cu, Si and vacancies in bcc Fe using DFT to show that the presence of vacancies, Si, or Cu stabilises cluster formation, as clusters containing exclusively Mn and/or Ni are not energetically stable in the absence of interstitials. We further identify which clusters may be reasonably approximated as a sum of pairwise interactions, and which instead require an explicit treatment of the three-body interaction, showing that the three-body term can account for as much as 0.3 eV, especially for clusters containing vacancies

    Novel pathogen-specific primers for the detection of Agrobacterium vitis and Agrobacterium tumefaciens

    Get PDF
    To detect agrobacteria causing crown gall disease of grapevine novel virulence and oncogene specific primer combinations were tested on Agrobacterium vitis and Agrobacterium tumefaciens strains including most opine types found in grapevines. Reproducible detection of all the tested pathogens in a single reaction was only possible with multiplex PCR using mixtures of virulence-, or oncogene specific primers. A primer combination including pehA, virF and virD2 gene-specific oligonucleotides amplified the corresponding fragments from nearly all strains included and distinguished A. vitis and A. tumefaciens strains carrying octopine or nopaline pTis and A. vitis vitopine strains. A second set of primers designed to amplify the T-DNA auxin genes iaaH and iaaM detected all of the tested pathogens and, as in the case of virF-, and virD2-specific primers, A. vitis vitopine strains formed also a distinct group. These data were further confirmed using opine synthase-, or 6b gene-specific primers that also allowed the identification and distinction of octopine and nopaline as well as vitopine isolates of A. vitis. Thus, a wide range of agrobacteria occurring on grapevine were detected and identified. On the other hand, our results confirm that vitopine-type agrobacteria form a distinct group within the genus Agrobacterium.

    A narrative review of adaptive testing and its application to medical education.

    Get PDF
    Adaptive testing has a long but largely unrecognized history. The advent of computer-based testing has created new opportunities to incorporate adaptive testing into conventional programmes of study. Relatively recently software has been developed that can automate the delivery of summative assessments that adapt by difficulty or content. Both types of adaptive testing require a large item bank that has been suitably quality assured. Adaptive testing by difficulty enables more reliable evaluation of individual candidate performance, although at the expense of transparency in decision making, and requiring unidirectional navigation. Adaptive testing by content enables reduction in compensation and targeted individual support to enable assurance of performance in all the required outcomes, although at the expense of discovery learning. With both types of adaptive testing, candidates are presented a different set of items to each other, and there is the potential for that to be perceived as unfair. However, when candidates of different abilities receive the same items, they may receive too many they can answer with ease, or too many that are too difficult to answer. Both situations may be considered unfair as neither provides the opportunity to demonstrate what they know. Adapting by difficulty addresses this. Similarly, when everyone is presented with the same items, but answer different items incorrectly, not providing individualized support and opportunity to demonstrate performance in all the required outcomes by revisiting content previously answered incorrectly could also be considered unfair; a point addressed when adapting by content. We review the educational rationale behind the evolution of adaptive testing and consider its inherent strengths and limitations. We explore the continuous pursuit of improvement of examination methodology and how software can facilitate personalized assessment. We highlight how this can serve as a catalyst for learning and refinement of curricula; fostering engagement of learner and educator alike

    The learning experiences of health and social care paraprofessionals on a foundation degree

    Get PDF
    Foundation degrees have been developed in the UK as a means of meeting the learning needs of paraprofessionals in health and social care and the services within which they work in a cost-effective fashion. Workplace learning is an intrinsic component to these degrees. Taking a socio-cultural perspective, this paper examines how the students' workplaces, life circumstances and sense of career trajectory shaped their learning experience and motivation. A small-scale evaluation study, using semi-structured interviews, focused on the learning experiences of a group of paraprofessionals enrolled in a foundation degree in health and social care. Data revealed fragmented employment patterns, underpinned by consistent vocational drives. While the study resonated with vocation, participants were ambivalent or lacked information about career progression. Workplace conditions, relationships and limited time shaped learning and coping strategies. A strategic and focused approach to student learning is required and includes attention to career pathways, workforce development strategy, the requirements of a range of stakeholders, workplace supervision and support for learning

    Crystal-clear neuronal computing

    Get PDF
    Induced progressive crystallization in chalcogenide-based materials can be used to closely mimic neuronal functions, opening new paths to neuromorphic computing

    Lines, Circles, Planes and Spheres

    Full text link
    Let SS be a set of nn points in R3\mathbb{R}^3, no three collinear and not all coplanar. If at most nkn-k are coplanar and nn is sufficiently large, the total number of planes determined is at least 1+k(nk2)(k2)(nk2)1 + k \binom{n-k}{2}-\binom{k}{2}(\frac{n-k}{2}). For similar conditions and sufficiently large nn, (inspired by the work of P. D. T. A. Elliott in \cite{Ell67}) we also show that the number of spheres determined by nn points is at least 1+(n13)t3orchard(n1)1+\binom{n-1}{3}-t_3^{orchard}(n-1), and this bound is best possible under its hypothesis. (By t3orchard(n)t_3^{orchard}(n), we are denoting the maximum number of three-point lines attainable by a configuration of nn points, no four collinear, in the plane, i.e., the classic Orchard Problem.) New lower bounds are also given for both lines and circles.Comment: 37 page

    On two problems in graph Ramsey theory

    Get PDF
    We study two classical problems in graph Ramsey theory, that of determining the Ramsey number of bounded-degree graphs and that of estimating the induced Ramsey number for a graph with a given number of vertices. The Ramsey number r(H) of a graph H is the least positive integer N such that every two-coloring of the edges of the complete graph KNK_N contains a monochromatic copy of H. A famous result of Chv\'atal, R\"{o}dl, Szemer\'edi and Trotter states that there exists a constant c(\Delta) such that r(H) \leq c(\Delta) n for every graph H with n vertices and maximum degree \Delta. The important open question is to determine the constant c(\Delta). The best results, both due to Graham, R\"{o}dl and Ruci\'nski, state that there are constants c and c' such that 2^{c' \Delta} \leq c(\Delta) \leq 2^{c \Delta \log^2 \Delta}. We improve this upper bound, showing that there is a constant c for which c(\Delta) \leq 2^{c \Delta \log \Delta}. The induced Ramsey number r_{ind}(H) of a graph H is the least positive integer N for which there exists a graph G on N vertices such that every two-coloring of the edges of G contains an induced monochromatic copy of H. Erd\H{o}s conjectured the existence of a constant c such that, for any graph H on n vertices, r_{ind}(H) \leq 2^{c n}. We move a step closer to proving this conjecture, showing that r_{ind} (H) \leq 2^{c n \log n}. This improves upon an earlier result of Kohayakawa, Pr\"{o}mel and R\"{o}dl by a factor of \log n in the exponent.Comment: 18 page

    Hierarchical analysis of genetic structure in the habitat-specialist Eastern Sand Darter (Ammocrypta pellucida)

    Get PDF
    Quantifying spatial genetic structure can reveal the relative influences of contemporary and historic factors underlying localized and regional patterns of genetic diversity and gene flow - important considerations for the development of effective conservation efforts. Using 10 polymorphic microsatellite loci, we characterize genetic variation among populations across the range of the Eastern Sand Darter (Ammocrypta pellucida), a small riverine percid that is highly dependent on sandy substrate microhabitats. We tested for fine scale, regional, and historic patterns of genetic structure. As expected, significant differentiation was detected among rivers within drainages and among drainages. At finer scales, an unexpected lack of within-river genetic structure among fragmented sandy microhabitats suggests that stratified dispersal resulting from unstable sand bar habitat degradation (natural and anthropogenic) may preclude substantial genetic differentiation within rivers. Among-drainage genetic structure indicates that postglacial (14kya) drainage connectivity continues to influence contemporary genetic structure among Eastern Sand Darter populations in southern Ontario. These results provide an unexpected contrast to other benthic riverine fish in the Great Lakes drainage and suggest that habitat-specific fishes, such as the Eastern Sand Darter, can evolve dispersal strategies that overcome fragmented and temporally unstable habitats