62 research outputs found

    Beyond Fish Oil Supplementation: The Effects of Alternative Plant Sources of Omega-3 Polyunsaturated Fatty Acids on Lipid Indexes and Cardiometabolic Biomarkers in Nutrients

    Get PDF
    Cardiovascular diseases remain a global challenge, and lipid-associated biomarkers can predict cardiovascular events. Extensive research on cardiovascular benefits of omega-3 polyunsaturated fatty acids (n3-PUFAs) is geared towards fish oil supplementation and fish-rich diets. Nevertheless, vegetarianism and veganism are becoming more popular across all segments of society, due to reasons as varied as personal, ethical and religious values, individual preferences and environment-related principles, amongst others. Due to the essentiality of PUFAs, plant sources of n3-PUFAs warrant further consideration. In this review, we have critically appraised the efficacy of plant-derived n3-PUFAs from foodstuffs and supplements upon lipid profile and selected cardiometabolic markers. Walnuts and flaxseed are the most common plant sources of n3-PUFAs, mainly alpha-linolenic acid (ALA), and feature the strongest scientific rationale for applicability into clinical practice. Furthermore, walnuts and flaxseed are sources of fibre, potassium, magnesium, and non-essential substances, including polyphenols and sterols, which in conjunction are known to ameliorate cardiovascular metabolism. ALA levels in rapeseed and soybean oils are only slight when compared to flaxseed oil. Spirulina and Chlorella, biomasses of cyanobacteria and green algae, are important sources of n3-PUFAs; however, their benefits upon cardiometabolic markers are plausibly driven by their antioxidant potential combined with their n3-PUFA content. In humans, ALA is not sufficiently bioconverted into eicosapentaenoic and docosahexaenoic acids. However, evidence suggests that plant sources of ALA are associated with favourable cardiometabolic status. ALA supplementation, or increased consumption of ALA-rich foodstuffs, combined with reduced omega-6 (n6) PUFAs intake, could improve the n3/n6 ratio and improve cardiometabolic and lipid profile

    Pharmaconutrition in the clinical management of COVID-19: a lack of evidence-based research but clues to personalized prescription

    Get PDF
    A scientific interest has emerged to identify pharmaceutical and nutritional strategies in the clinical management of coronavirus disease 2019 (COVID-19). The purpose of this narrative review is to critically assess and discuss pharmaconutrition strategies that, secondary to accepted treatment methods, could be candidates in the current context of COVID-19. Oral medicinal doses of vitamin C (1–3 g/d) and zinc (80 mg/d elemental zinc) could be promising at the first signs and symptoms of COVID-19 as well as for general colds. In critical care situations requiring parenteral nutrition, vitamin C (3–10 g/d) and glutamine (0.3–0.5 g/kg/d) administration could be considered, whereas vitamin D3 administration (100,000 IU administered intramuscularly as a one-time dose) could possess benefits for patients with severe deficiency. Considering the presence of n-3 polyunsaturated fatty acids and arginine in immune-enhancing diets, their co-administration may also occur in clinical conditions where these formulations are recommended. However, despite the use of the aforementioned strategies in prior contexts, there is currently no evidence of the utility of any nutritional strategies in the management of SARS-CoV-2 infection and COVID-19. Nevertheless, ongoing and future clinical research is imperative to determine if any pharmaconutrition strategies can halt the progression of COVID-19

    Plant Polyphenols in Obesity and Obesity-Associated Metabolic Disorders: A Narrative Review of Resveratrol and Flavonoids Upon the Molecular Basis of Inflammation

    Get PDF
    Background: The epidemic of obesity, metabolic syndrome, type 2 diabetes and non-alcoholic fatty liver disease is currently unsustainable for Public Health systems, and preventive and therapeutic approaches are urgently sought to improve health outcomes for affected individuals. Aim: In this study, we aim to further explore and synthetize available evidence on the effects of selected plant polyphenols (PP) upon molecular mechanisms associated with oxidative stress and inflammatory pathways. We also aim to briefly discuss PP supplementation as therapeutic tool for the prevention and management of prevalent obesity-associated metabolic disorders. Methods: This narrative review was performed in the PubMed database in June 2018 without restriction of publication period. Results: PP influence a broad range of cell signalling pathways; by modulating the activity of nuclear transcription factors, PP modulate gene expression and antioxidant responses, as well as inflammation and its resolution. Several interventional studies have investigated the effects of PP supplementation in a variety of sample populations, but no consensus has yet been reached regarding composition, dosage or course of treatment for therapeutic purposes. However, overall results tend to suggest a positive effect of PP in either improving metabolic profile or minimizing negative disease outcomes. Careful consideration on PP supplementation is paramount; adverse effects have already been described. Conclusion: The successful prevention and management or treatment of obesity-associated metabolic disorders may be achieved through an effective multidisciplinary approach to tackle their modifiable risk factors. A balanced diet, which includes naturally occurring sources of PP associated with lower consumption of ultra-processed foods, is a relevant approach for the positive health outcomes desired

    The effectiveness of automated digital health solutions at successfully managing obesity and obesity-associated disorders: A PICO-structured investigation

    Get PDF
    Most adults in the UK and USA are classified as overweight or obese. Recent studies suggest that the prevalence of obesity has further increased during the SARS-CoV-2 pandemic and associated lockdowns. Digital technologies may be effective at managing obesity and related comorbidities, a potential further justified by social isolation and distancing circumstances. This review of published literature employed a Patient-Intervention-Comparison-Outcome structured approach on the use of digital solutions to determine the effectiveness of their use in the management and treatment of obesity, hypertension, and type 2 diabetes and included commercially available, automated devices and applications that did not require intervention from a clinician. Our search covered studies published between January 2004 and February 2019, and 18 papers were included in the final analysis. The digital solutions reviewed were smartphone applications, wearable activity trackers, and ‘digital medicine offerings’ (DMO), including ingestible sensors and wearable patches. This study found that not all interventions were effective at encouraging the lifestyle changes required for the management of obesity. Smartphone applications requiring interaction from the patient appeared to be more effective at encouraging engagement with treatment interventions than more passive wearable activity trackers. Automated feedback from smartphone applications was effective at managing type 2 diabetes, while DMO were effective at reducing blood pressure. With the advancement of new technologies alongside a rapid increase in the prevalence of obesity and associated disorders, further studies comparing the various technologies available in larger sample populations for longer periods would help determine the most cost-effective preventive and therapeutic strategies

    The Usefulness of Melatonin in the Field of Obstetrics and Gynecology

    Get PDF
    Disorders of the female reproductive system, including those associated with hormone regulation, fertility rate and fetal health, are issues of great concern worldwide. More recently, melatonin supplementation has been suggested as a therapeutic approach in gynecological practice. In both animal models and in women, melatonin supplementation suggests a therapeutic and preventative potential, effects attributed mainly to its antioxidant properties and action as hormone modulator. The aim of this literature review is to further investigate the evidence available on the effects of melatonin supplementation in animal and human studies, focusing on its potential application to gynecology. Melatonin-containing supplements are easily found in online and high street retailers, and despite its supplementation deemed to be relatively safe, no consensus has been reached on effective dosage and supplementation period. Short term supplementation studies, of up to six months, suggest that a daily posology of 2 to 18 mg of melatonin may have the potential to improve fertility rate, oocyte quality, maturation and number of embryos. However, the evidence available so far on the effects of melatonin supplementation covering gestational age and gestational outcomes is very scarce. Clinical trials and longer-term supplementation studies are required to assess any clinical outcome associated with melatonin supplementation in the field of gynecology

    Eating more sardines instead of fish oil supplementation: Beyond omega-3 polyunsaturated fatty acids, a matrix of nutrients with cardiovascular benefits

    Get PDF
    Omega-3 polyunsaturated fatty acids (n-3 PUFA) play a significant role in the prevention and management of cardiometabolic diseases associated with a mild chronic pro-inflammatory background, including type 2 diabetes, hypertension, hypertriglyceridaemia, and fatty liver disease. The effects of n-3 PUFA supplements specifically, remain controversial regarding reducing risks of cardiovascular events. n-3 PUFA supplements come at a cost for the consumer and can result in polypharmacy for patients on pharmacotherapy. Sardines are a well-known, inexpensive source of n-3 PUFA and their consumption could reduce the need for n-3 PUFA supplementation. Moreover, sardines contain other cardioprotective nutrients, although further insights are crucial to translate a recommendation for sardine consumption into clinical practice. The present review discusses the matrix of nutrients contained in sardines which confer health benefits for cardiometabolism, beyond n-3 PUFA. Sardines contain calcium, potassium, magnesium, zinc, iron, taurine, arginine and other nutrients which together modulate mild inflammation and exacerbated oxidative stress observed in cardiovascular disease and in haemodynamic dysfunction. In a common serving of sardines, calcium, potassium, and magnesium are the minerals at higher amounts to elicit clinical benefits, whilst other nutrients are present in lower but valuable amounts. A pragmatic approach towards the consumption of such nutrients in the clinical scenario should be adopted to consider the dose–response relationship effects on physiological interactions. As most recommendations currently available are based on an indirect rationale of the physiological actions of the nutrients found in sardines, randomised clinical trials are warranted to expand the evidence on the benefits of sardine consumption

    Melatonin supplementation in the management of obesity and obesity-associated disorders: a review of physiological mechanisms and clinical applications

    Get PDF
    Despite the evolving advances in clinical approaches to obesity and its inherent comorbidities, the therapeutic challenge persists. Among several pharmacological tools already investigated, recent studies suggest that melatonin supplementation could be an efficient therapeutic approach in the context of obesity. In the present review, we have amalgamated the evidence so far available on physiological effects of melatonin supplementation in obesity therapies, addressing its effects upon neuroendocrine systems, cardiometabolic biomarkers and body composition. Most studies herein appraised employed melatonin supplementation at dosages ranging from 1 to 20 mg/day, and most studies followed up participants for periods from 3 weeks to 12 months. Overall, it was observed that melatonin plays an important role in glycaemic homeostasis, in addition to modulation of white adipose tissue activity and lipid metabolism, and mitochondrial activity. Additionally, melatonin increases brown adipose tissue volume and activity, and its antioxidant and anti-inflammatory properties have also been demonstrated. There appears to be a role for melatonin in adiposity reduction; however, several questions remain unanswered, for example melatonin baseline levels in obesity, and whether any seeming hypomelatonaemia or melatonin irresponsiveness could be clarifying factors. Supplementation dosage studies and more thorough clinical trials are needed to ascertain not only the relevance of such findings but also the efficacy of melatonin supplementation

    A Palatable Hyperlipidic Diet Causes Obesity and Affects Brain Glucose Metabolism in Rats

    Get PDF
    Background We have previously shown that either the continuous intake of a palatable hyperlipidic diet (H) or the alternation of chow (C) and an H diet (CH regimen) induced obesity in rats. Here, we investigated whether the time of the start and duration of these feeding regimens are relevant and whether they affect brain glucose metabolism. Methods Male Wistar rats received C, H, or CH diets during various periods of their life spans: days 30-60, days 30-90, or days 60-90. Experiments were performed the 60th or the 90th day of life. Rats were killed by decapitation. The glucose, insulin, leptin plasma concentration, and lipid content of the carcasses were determined. The brain was sliced and incubated with or without insulin for the analysis of glucose uptake, oxidation, and the conversion of [1-14C]-glucose to lipids. Results The relative carcass lipid content increased in all of the H and CH groups, and the H30-60 and H30-90 groups had the highest levels. Groups H30-60, H30-90, CH30-60, and CH30-90 exhibited a higher serum glucose level. Serum leptin increased in all H groups and in the CH60-90 and CH30-90 groups. Serum insulin was elevated in the H30-60, H60-90, CH60-90, CH30-90 groups. Basal brain glucose consumption and hypothalamic insulin receptor density were lower only in the CH30-60 group. The rate of brain lipogenesis was increased in the H30-90 and CH30-90 groups. Conclusion These findings indicate that both H and CH diet regimens increased body adiposity independent treatment and the age at which treatment was started, whereas these diets caused hyperglycemia and affected brain metabolism when started at an early age

    Hydrogenated fat diet intake during pregnancy and lactation modifies the PAI-1 gene expression in white adipose tissue of offspring in adult life

    Get PDF
    We examine whether feeding pregnant and lactating rats hydrogenated fats rich in trans fatty acids modifies the plasma lipid profiles and the expression of adipokines involved with insulin resistance and cardiovascular disease in their 90-day-old offspring. Pregnant and lactating Wistar rats were fed with either a control diet (C group) or one enriched with hydrogenated vegetable fat (T group). Upon weaning, the male pups were sorted into four groups: CC, mothers were receiving C and pups were kept on C; CT, mothers were receiving C and pups were fed with T; TT, mothers were receiving T and pups were kept on T; TC, mothers were receiving T and pups were fed with C. Pups' food intake and body weight were quantified weekly and the pups were killed at day 90 of life by decapitation. Blood and carcass as well as retroperitoneal, epididymal, and subcutaneous white adipose tissues were collected. Food intake and body weight were lower in TC and TT, and metabolic efficiency was reduced in TT. Offspring of TT and TC rats had increased white adipose tissue PAI-1 gene expression. Insulin receptor was higher in TT than other groups. Ingestion of hydrogenated vegetable fat by the mother during gestation and lactation could promote deleterious consequences, even after the withdrawal of the causal factor

    Erythrocyte Phospholipid Molecular Species and Fatty Acids of Down Syndrome Children Compared with Non-affected Siblings

    Get PDF
    The majority of children with Down syndrome (DS) develop Alzheimer's disease (AD) at an early age. Although long-chain n-3 fatty acids (FA) are protective of neurodegeneration, little is known about the FA status in DS. In the present study, we aimed to investigate whether children with DS presented altered plasma and erythrocyte membrane phospholipids (PL) FA composition, when compared with their non-affected siblings. Venous blood samples were analysed for plasma and erythrocyte membrane FA composition by TLC followed by GC techniques. Lipid molecular species were determined by electrospray ionisation/tandem MS (ESI-MS/MS). FA analysis measured by standard GC showed an increased concentration of MUFA and a decreased concentration of plasmalogens in major PL fractions, but there were no differences in the concentrations of arachidonic acid or DHA. However, as identified by ESI-MS/MS, children with DS had increased levels of the following erythrocyte PL molecular species: 16 : 0–16 : 0, 16 : 0–18 : 1 and 16 : 0–18 : 2n-6, with reduced levels of 16 : 0–20 : 4n-6 species. Children with DS presented significantly higher levels of MUFA in both plasma and erythrocyte membrane, as well as higher levels of saturated and monounsaturated molecular species. Of interest was the almost double proportion of 16 : 0–18 : 2n-6 and nearly half the proportion of 16 : 0–20 : 4n-6 of choline phosphoacylglycerol species in children with DS compared with their non-affected siblings. These significant differences were only revealed by ESI-MS/MS and were not observed in the GC analysis. Further investigations are needed to explore molecular mechanisms and to test the association between the pathophysiology of DS and the risk of AD
    • …
    corecore