6,702 research outputs found

    SCC: A Service Centered Calculus

    Get PDF
    We seek for a small set of primitives that might serve as a basis for formalising and programming service oriented applications over global computers. As an outcome of this study we introduce here SCC, a process calculus that features explicit notions of service definition, service invocation and session handling. Our proposal has been influenced by Orc, a programming model for structured orchestration of services, but the SCC’s session handling mechanism allows for the definition of structured interaction protocols, more complex than the basic request-response provided by Orc. We present syntax and operational semantics of SCC and a number of simple but nontrivial programming examples that demonstrate flexibility of the chosen set of primitives. A few encodings are also provided to relate our proposal with existing ones

    Simultaneous follow-up of planetary transits: revised physical properties for the planetary systems HAT-P-16 and WASP-21

    Full text link
    Context. By now more than 300 planets transiting their host star have been found, and much effort is being put into measuring the properties of each system. Light curves of planetary transits often contain deviations from a simple transit shape, and it is generally difficult to differentiate between anomalies of astrophysical nature (e.g. starspots) and correlated noise due to instrumental or atmospheric effects. Our solution is to observe transit events simultaneously with two telescopes located at different observatories. Aims. Using this observational strategy, we look for anomalies in the light curves of two transiting planetary systems and accurately estimate their physical parameters. Methods. We present the first photometric follow-up of the transiting planet HAT-P-16 b, and new photometric observations of WASP-21 b, obtained simultaneously with two medium-class telescopes located in different countries, using the telescope defocussing technique. We modeled these and other published data in order to estimate the physical parameters of the two planetary systems. Results. The simultaneous observations did not highlight particular features in the light curves, which is consistent with the low activity levels of the two stars. For HAT-P-16, we calculated a new ephemeris and found that the planet is 1.3 \sigma colder and smaller (Rb = 1.190 \pm 0.037 RJup) than the initial estimates, suggesting the presence of a massive core. Our physical parameters for this system point towards a younger age than previously thought. The results obtained for WASP-21 reveal lower values for the mass and the density of the planet (by 1.0 \sigma and 1.4 \sigma respectively) with respect to those found in the discovery paper, in agreement with a subsequent study. We found no evidence of any transit timing variations in either system.Comment: 8 pages, 6 figures, accepted for publication in A&

    Physical properties, starspot activity, orbital obliquity, and transmission spectrum of the Qatar-2 planetary system from multi-colour photometry

    Full text link
    We present seventeen high-precision light curves of five transits of the planet Qatar-2b, obtained from four defocussed 2m-class telescopes. Three of the transits were observed simultaneously in the SDSS griz passbands using the seven-beam GROND imager on the MPG/ESO 2.2-m telescope. A fourth was observed simultaneously in Gunn grz using the CAHA 2.2-m telescope with BUSCA, and in r using the Cassini 1.52-m telescope. Every light curve shows small anomalies due to the passage of the planetary shadow over a cool spot on the surface of the host star. We fit the light curves with the prism+gemc model to obtain the photometric parameters of the system and the position, size and contrast of each spot. We use these photometric parameters and published spectroscopic measurements to obtain the physical properties of the system to high precision, finding a larger radius and lower density for both star and planet than previously thought. By tracking the change in position of one starspot between two transit observations we measure the orbital obliquity of Qatar-2 b to be 4.3 \pm 4.5 degree, strongly indicating an alignment of the stellar spin with the orbit of the planet. We calculate the rotation period and velocity of the cool host star to be 11.4 \pm 0.5 d and 3.28 \pm 0.13 km/s at a colatitude of 74 degree. We assemble the planet's transmission spectrum over the 386-976 nm wavelength range and search for variations of the measured radius of Qatar-2 b as a function of wavelength. Our analysis highlights a possible H2/He Rayleigh scattering in the blue.Comment: 20 pages, 14 figures, to appear in Monthly Notices of the Royal Astronomical Societ

    Two-parameter non-linear spacetime perturbations: gauge transformations and gauge invariance

    Get PDF
    An implicit fundamental assumption in relativistic perturbation theory is that there exists a parametric family of spacetimes that can be Taylor expanded around a background. The choice of the latter is crucial to obtain a manageable theory, so that it is sometime convenient to construct a perturbative formalism based on two (or more) parameters. The study of perturbations of rotating stars is a good example: in this case one can treat the stationary axisymmetric star using a slow rotation approximation (expansion in the angular velocity Omega), so that the background is spherical. Generic perturbations of the rotating star (say parametrized by lambda) are then built on top of the axisymmetric perturbations in Omega. Clearly, any interesting physics requires non-linear perturbations, as at least terms lambda Omega need to be considered. In this paper we analyse the gauge dependence of non-linear perturbations depending on two parameters, derive explicit higher order gauge transformation rules, and define gauge invariance. The formalism is completely general and can be used in different applications of general relativity or any other spacetime theory.Comment: 22 pages, 3 figures. Minor changes to match the version appeared in Classical and Quantum Gravit

    Bigraphical modelling of architectural patterns

    Get PDF
    Selected for publication in FACS'2011 post-proceedings, to appear in Springer Lecture Notes in Computer ScienceArchery is a language for behavioural modelling of architectural patterns, supporting hierarchical composition and a type discipline. This paper extends Archery to cope with the patterns' structural dimension through a set of (re-)configuration combinators and constraints that all instances of a pattern must obey. Both types and instances of architectural patterns are semantically represented as bigraphical reactive systems and operations upon them as reaction rules. Such a bigraphical semantics provides a rigorous model for Archery patterns and reduces constraint verification in architectures to a type-checking problem.(undefined

    Second Order Perturbations of Flat Dust FLRW Universes with a Cosmological Constant

    Get PDF
    We summarize recent results concerning the evolution of second order perturbations in flat dust irrotational FLRW models with őõ‚Ȇ0\Lambda\ne 0. We show that asymptotically these perturbations tend to constants in time, in agreement with the cosmic no-hair conjecture. We solve numerically the second order scalar perturbation equation, and very briefly discuss its all time behaviour and some possible implications for the structure formation.Comment: 6 pages, 1 figure. to be published in "Proceedings of the 5th Alexander Friedmann Seminar on Gravitation and Cosmology", Int. Journ. Mod. Phys. A (2002). Macros: ws-ijmpa.cls, ws-p9-75x6-50.cl

    ISW effect in Unified Dark Matter Scalar Field Cosmologies: an analytical approach

    Get PDF
    We perform an analytical study of the Integrated Sachs-Wolfe (ISW) effect within the framework of Unified Dark Matter models based on a scalar field which aim at a unified description of dark energy and dark matter. Computing the temperature power spectrum of the Cosmic Microwave Background anisotropies we are able to isolate those contributions that can potentially lead to strong deviations from the usual ISW effect occurring in a őõ\LambdaCDM universe. This helps to highlight the crucial role played by the sound speed in the Unified Dark Matter models. Our treatment is completely general in that all the results depend only on the speed of sound of the dark component and thus it can be applied to a variety of unified models, including those which are not described by a scalar field but relies on a single dark fluid.Comment: 15 pages, LateX file; one comment after Eq.(36) and formula (44) added in order to underline procedure and main results. Accepted for publication in JCAP; some typos correcte

    Are braneworlds born isotropic?

    Get PDF
    It has recently been suggested that an isotropic singularity may be a generic feature of brane cosmologies, even in the inhomogeneous case. Using the covariant and gauge-invariant approach we present a detailed analysis of linear perturbations of the isotropic model Fb{\cal F}_b which is a past attractor in the phase space of homogeneous Bianchi models on the brane. We find that for matter with an equation of state parameter ő≥>1\gamma > 1, the dimensionless variables representing generic anisotropic and inhomogeneous perturbations decay as t‚Üí0t\to 0, showing that the model Fb{\cal F}_b is asymptotically stable in the past. We conclude that brane universes are born with isotropy naturally built-in, contrary to standard cosmology. The observed large-scale homogeneity and isotropy of the universe can therefore be explained as a consequence of the initial conditions if the brane-world paradigm represents a description of the very early universe.Comment: Changed to match published versio

    Weather radar for urban hydrological applications: lessons learnt and research needs identified from 4 pilot catchments in North-West Europe

    Get PDF
    International audienceThis study investigates the impact of rainfall estimates of different spatial resolutions on the hydraulic outputs of the models of four of the EU RainGain project’s pilot locations (the Cranbrook catchment (UK), the Herent catchment (Belgium), the Morée-Sausset catchment (France) and the Kralingen District (The Netherlands)). Two storm events, one convective and one stratiform, measured by a polarimetric X-band radar located in Cabauw (The Netherlands) were selected for analysis. The original radar estimates, at 100 m and 1 min resolutions, were aggregated to a spatial resolution of 1000 m. These estimates were then applied to the high-resolution semi-distributed hydraulic models of the four urban catchments, all of which have similar size (between 5 and 8 km2), but different morphological, hydrological and hydraulic characteristics. When doing so, methodologies for standardising rainfall inputs and making results comparable were implemented. The response of the different catchments to rainfall inputs of varying spatial resolution is analysed in the light of model configuration, catchment and storm characteristics. Rather surprisingly, the results show that for the two events under consideration the spatial resolution (i.e. 100 m vs 1000 m) of rainfall inputs does not have a significant influence on the outputs of urban drainage models. The present study will soon be extended to more storms as well as model structures and resolutions, with the final aim of identifying critical spatial-temporal resolutions for urban catchment modelling in relation to catchment and storm event characteristics
    • ‚Ķ