2,448 research outputs found

    Determination of Trace Silicone Contamination on Composites by Quantitative XPS and LIBS

    Get PDF
    Surface treatment and surface characterization techniques are critical to ensure that adherends are chemically activated and free of contaminants prior to adhesive bonding. Silicone contamination from mold-release agents and other sources can interfere with interfacial bonding, decreasing the durability and performance of bonded composite structures. Tools and methods are needed that can be used in a production environment to reliably detect low levels of contaminants in a rapid, simple, and cost-effective manner to improve bond reliability. In this work, surface characterization of carbon fiber reinforced polymer (CFRP) composites was performed using laser induced breakdown spectroscopy (LIBS) and the results were compared with those obtained from X-ray photoelectron spectroscopy (XPS). The objective was to investigate the ability to quantify the surface species measured by LIBS since it offers many advantages over XPS in terms of ease of use, sample preparation, and real-time results. The as-processed CFRP panels had trace surface silicone contamination from the fabrication process, the source of which was not investigated. The composites were laser treated at select average laser power levels, resulting in varying levels of contamination reduction. The Si atomic percentage measurements using XPS were conducted both before and after laser ablation. The XPS results were compared with those obtained from LIBS to assess the reliability of each technique for surface contaminant characterization. The results showed an excellent correlation in Si atomic concentration between the two techniques

    Bycatch in a Commercial Lobster Fishery: Effects on Two Benthic Predators, Sea Raven and Longhorn Sculpin

    Get PDF
    Studying the species‐specific responses to fishing capture is critical for effective management and conservation of bycatch species given that acute stress incurred from capture and handling may ultimately lead to mortality. While species of low commercial value are often overlooked, having accurate information on the effects of capture on all species is necessary for ecosystem‐based management. Sea Raven (SR) Hemitripterus americanus and Longhorn Sculpin (LHS) Myoxocephalus octodecemspinosus are routinely captured in the commercial American lobster Homarus americanus fishery in the Gulf of Maine, and they are discarded due to low commercial value. Despite a lack of economic value, these predatory species play important roles in shaping the benthic communities that they inhabit, highlighting the need to study their stress and mortality due to capture and handling. To help understand the effects of the lobster fishery on these species, the current study evaluated the physical, behavioral, and physiological stress responses of SR and LHS to capture in the state of Maine Zone G commercial lobster fishery. Collectively, our results suggest that although these species appeared to be resilient to capture based on an overt injury assessment, stress responses occurred based on reflex impairment and physiological perturbations, and these responses were species‐specific. Given the prevalence of behavioral and physiological stress in this study, further research into the survival outcomes of SR and LHS following release in the commercial lobster fishery is warranted

    Biodiversity of CS-proteoglycan sulphation motifs: chemical messenger recognition modules with roles in information transfer, control of cellular behaviour and tissue morphogenesis

    Get PDF
    Chondroitin sulphate glycosaminoglycan chains on cell and ECM proteoglycans can no longer be regarded as merely hydrodynamic space fillers. Overwhelming evidence over recent years indicates that sulphation motif sequences within the chondroitin sulphate chain structure are a source of significant biological information to cells and their surrounding environment. Chondroitin sulphate sulphation motifs have been shown to interact with a wide variety of bioactive molecules e.g. cytokines, growth factors, chemokines, morphogenetic proteins, enzymes and enzyme inhibitors, as well as structural components within the extracellular milieu. They are therefore capable of modulating a panoply of signalling pathways thus controlling diverse cellular behaviours including proliferation, differentiation, migration and matrix synthesis. Consequently, through these motifs, chondroitin sulphate proteoglycans play significant roles in the maintenance of tissue homeostasis, morphogenesis, development, growth and disease. Here we review (i) the biodiversity of chondroitin sulphate proteoglycans and their sulphation motif sequences and (ii) the current understanding of the signalling roles they play in regulating cellular behaviour during tissue development, growth, disease and repai

    Perceptions and Reactions with Regard to Pneumonic Plague

    Get PDF
    We assessed perceptions and likely reactions of 1,005 UK adults to a hypothetical terrorist attack involving pneumonic plague. Likely compliance with official recommendations ranged from good (98% would take antimicrobial drugs) to poor (76% would visit a treatment center). Perceptions about plague were associated with these intentions

    Formation and Evolution of Planetary Systems: Cold Outer Disks Associated with Sun-like stars

    Full text link
    We present the discovery of debris systems around three solar mass stars based upon observations performed with the Spitzer Space Telescope as part of a Legacy Science Program, ``the Formation and Evolution of Planetary Systems'' (FEPS). We also confirm the presence of debris around two other stars. All the stars exhibit infrared emission in excess of the expected photospheres in the 70 micron band, but are consistent with photospheric emission at <= 33 micron. This restricts the maximum temperature of debris in equilibrium with the stellar radiation to T < 70 K. We find that these sources are relatively old in the FEPS sample, in the age range 0.7 - 3 Gyr. Based on models of the spectral energy distributions, we suggest that these debris systems represent materials generated by collisions of planetesimal belts. We speculate on the nature of these systems through comparisons to our own Kuiper Belt, and on the likely planet(s) responsible for stirring the system and ultimately releasing dust through collisions. We further report observations of a nearby star HD 13974 (d =11 pc) that is indistinguishable from a bare photosphere at both 24 micron and 70 micron. The observations place strong upper limits on the presence of any cold dust in this nearby system (L_IR/L_* < 10^{-5.2}).Comment: 31 pages, 9 figures, accepted for publication in Ap

    Methane, Manganese, and Helium in Hydrothermal Plumes following Volcanic Eruptions on the East Pacific Rise near 9°500N

    Get PDF
    As part of a rapid response cruise in May 2006, we surveyed water column hydrothermal plumes and bottom conditions on the East Pacific Rise between 9°46.0\u27N and 9°57.6\u27N, where recent seafloor volcanic activity was suspected. Real-time measurements included temperature, light transmission, and salinity. Samples of the plume waters were analyzed for methane, manganese, helium concentrations, and the δ13C of methane. These data allow us to examine the effects of the 2005–2006 volcanic eruption(s) on plume chemistry. Methane and manganese are sensitive tracers of hydrothermal plumes, and both were present in high concentrations. Methane reached 347 nM in upper plume samples (250 m above seafloor) and exceeded 1085 nM in a near-bottom sample. Mn reached 54 nM in the upper plume and 98 nM in near-bottom samples. The concentrations of methane and Mn were higher than measurements made after a volcanic eruption in the same area in 1991, but the ratio of CH4/Mn, at 6.7, is slightly lower, though still well above the ratios measured in chronic plumes. High concentrations of methane in near-bottom samples were associated with areas of microbial mats and diffuse venting documented in seafloor imagery. The isotopic composition of the methane carbon shows evidence of active microbial oxidation; however, neither the fractionation factor nor the source of the eruption-associated methane can be determined with any certainty. Considerable scatter in the isotopic data is due to diverse sources for the methane as well as fractionation as methane is consumed. One sample at +21% versus Peedee belemnite standard is among the most enriched methane carbon values reported in a hydrothermal plume to date

    High dietary fat intake increases fat oxidation and reduces skeletal muscle mitochondrial respiration in trained humans.

    Get PDF
    High-fat, low-carbohydrate (CHO) diets increase whole-body rates of fat oxidation and down-regulate CHO metabolism. We measured substrate utilization and skeletal muscle mitochondrial respiration to determine whether these adaptations are driven by high fat or low CHO availability. In a randomized crossover design, 8 male cyclists consumed 5 d of a high-CHO diet [>70% energy intake (EI)], followed by 5 d of either an isoenergetic high-fat (HFAT; >65% EI) or high-protein diet (HPRO; >65% EI) with CHO intake clamped at <20% EI. During the intervention, participants undertook daily exercise training. On d 6, participants consumed a high-CHO diet before performing 100 min of submaximal steady-state cycling plus an ∟30-min time trial. After 5 d of HFAT, skeletal muscle mitochondrial respiration supported by octanoylcarnitine and pyruvate, as well as uncoupled respiration, was decreased at rest, and rates of whole-body fat oxidation were higher during exercise compared with HPRO. After 1 d of high-CHO diet intake, mitochondrial respiration returned to baseline values in HFAT, whereas rates of substrate oxidation returned toward baseline in both conditions. These findings demonstrate that high dietary fat intake, rather than low-CHO intake, contributes to reductions in mitochondrial respiration and increases in whole-body rates of fat oxidation after a consuming a high-fat, low-CHO diet.-Leckey, J. J., Hoffman, N. J., Parr, E. B., Devlin, B. L., Trewin, A. J., Stepto, N. K., Morton, J. P., Burke, L. M., Hawley, J. A. High dietary fat intake increases fat oxidation and reduces skeletal muscle mitochondrial respiration in trained humans

    An Empirical Investigation to Understand the Difficulties and Challenges of Software Modellers When Using Modelling Tools

    Get PDF
    Software modelling is a challenging and error-prone task. Existing Model-Driven Engineering (MDE) tools provide modellers with little aid, partly because tool providers have not investigated users' difficulties through empirical investigations such as field studies. This paper presents the results of a two-phase user study to identify the most prominent difficulties that users might face when developing UML Class and State-Machine diagrams using UML modelling tools. In the first phase, we identified the preliminary modelling challenges by analysing 30 Class and State-Machine models that were previously developed by students as a course assignment. The result of the first phase helped us design the second phase of our user study where we empirically investigated different aspects of using modelling tools: the tools' effectiveness, users' efficiency, users' satisfaction, the gap between users' expectation and experience, and users' cognitive difficulties. Our results suggest that users' greatest difficulties are in (1) remembering contextual information and (2) identifying and fixing errors and inconsistencies.NSERC CREATE, 465463-2015 || NSERC Discovery Grant, 155243-1
    • …
    corecore