2,138 research outputs found

    Obituary : Donald Williams Thomas (1953-2009)

    Full text link

    In memoriam : Donald W. Thomas : 1953-2009

    Full text link

    Eavesdropping by Bats: The Influence of Echolocation Call Design and Foraging Strategy

    Get PDF
    We used playback presentations to free-flying bats of 3 species to assess the influence of echolocation call design and foraging strategy on the role of echolocation calls in communication. Near feeding sites over water, Myotis lucifugus and M. yumanensis responded positively only to echolocation calls of conspecifics. Near roosts, these bats did not respond before young of the year became volant, and after this responded to presentations of echolocation calls of similar and dissimilar design. At feeding sites Lasiurus borealis responded only to echolocation calls of conspecifics and particularly to feeding buzzes . While Myotis, particularly subadults, appear to use the echolocation calls of conspecifics to locate feeding sites, L. borealis appears to use the calls of a foraging neighbor attacking prey to identify opportunities for \u27stealing\u27 food

    Animal Behavior: Who Will Croak Next?

    Get PDF
    A recent study with the predatory bat Trachops cirrhosus has shown the importance for this species of social learning about novel prey using auditory, rather than visual or olfactory, cues

    Ongoing Movement of the Hermit Warbler X Townsend's Warbler Hybrid Zone

    Get PDF
    BACKGROUND: Movements of hybrid zones - areas of overlap and interbreeding between species - are difficult to document empirically. This is true because moving hybrid zones are expected to be rare, and because movement may proceed too slowly to be measured directly. Townsend's warblers (Dendroica townsendi) hybridize with hermit warblers (D. occidentalis) where their ranges overlap in Washington and Oregon. Previous morphological, behavioral, and genetic studies of this hybrid zone suggest that it has been steadily moving into the geographical range of hermit warblers, with the more aggressive Townsend's warblers replacing hermit warblers along ∼2000 km of the Pacific coast of Canada and Alaska. Ongoing movement of the zone, however, has yet to be empirically demonstrated. METHODOLOGY/PRINCIPAL FINDINGS: We compared recently sampled hybrid zone specimens to those collected 10-20 years earlier, to test directly the long-standing hypothesis of hybrid zone movement between these species. Newly sampled specimens were more Townsend's-like than historical specimens, consistent with ongoing movement of the zone into the geographical range of hermit warblers. CONCLUSIONS/SIGNIFICANCE: While movement of a hybrid zone may be explained by several possible mechanisms, in this case a wealth of existing evidence suggests that movement is being driven by the competitive displacement of hermit warblers by Townsend's warblers. That no ecological differences have been found between these species, and that replacement of hermit warblers by Townsend's warblers is proceeding downward in latitude and elevation - opposite the directions of range shifts predicted by recent climate change - further support that this movement is not being driven by alternative environmental factors. If the mechanism of competitive displacement is correct, whether this process will ultimately lead to the extinction of hermit warblers will depend on the continued maintenance of the dramatic competitive asymmetry observed between the species

    Scatter-Hoarding Rodents Prefer Slightly Astringent Food

    Get PDF
    The mutualistic interaction between scatter-hoarding rodents and their seed plants is highly complex yet poorly understood. Plants may benefit from the seed dispersal behavior of rodents, as long as seed consumption is minimized. In parallel, rodents may maximize foraging efficiency and cache high-quality resources for future consumption. Defensive compounds, such as tannins, are thought to be a major mechanism for plant control over rodent behavior. However, previous studies, using naturally occurring seeds, have not provided conclusive evidence supporting this hypothesis. Here, we test the importance of tannin concentrations on the scatter-hoarding behavior of rodents by using an artificial seed system. We combined feeding trials and field observations to examine the overall impact of seed tannin concentrations on rodent behavior and health. We found that rodents favored seeds with an intermediate amount of tannin (∼5%) in the field. Meanwhile, in rodents that were fed a diet with different tannin content, only diets with high tannin content (25%, 15%, and 10%) caused a significant negative influence on rodent survival and health. Significant differences were not found among treatments with tannin levels of 0–5%. In contrast to many existing studies, our results clearly demonstrate that scatter-hoarding rodents prefer slightly ‘astringent’ food. In the co-evolutionary arms race between plants and animals, our results suggest that while tannins may play a significant role in reducing general predation levels by the faunal community, they have no precise control over the behavior of their mutualistic partner. Instead, the two partners appear to have reached an evolutionary point where both parties receive adequate benefits, with the year-to-year outcome being dependent on a wide range of factors beyond the control of either partner

    Bats

    Get PDF

    How Long Do the Dead Survive on the Road? Carcass Persistence Probability and Implications for Road-Kill Monitoring Surveys

    Get PDF
    Background: Road mortality is probably the best-known and visible impact of roads upon wildlife. Although several factors influence road-kill counts, carcass persistence time is considered the most important determinant underlying underestimates of road mortality. The present study aims to describe and model carcass persistence variability on the road for different taxonomic groups under different environmental conditions throughout the year; and also to assess the effect of sampling frequency on the relative variation in road-kill estimates registered within a survey. Methodology/Principal Findings: Daily surveys of road-killed vertebrates were conducted over one year along four road sections with different traffic volumes. Survival analysis was then used to i) describe carcass persistence timings for overall and for specific animal groups; ii) assess optimal sampling designs according to research objectives; and iii) model the influence of road, animal and weather factors on carcass persistence probabilities. Most animal carcasses persisted on the road for the first day only, with some groups disappearing at very high rates. The advisable periodicity of road monitoring that minimizes bias in road mortality estimates is daily monitoring for bats (in the morning) and lizards (in the afternoon), daily monitoring for toads, small birds, small mammals, snakes, salamanders, and lagomorphs; 1 day-interval (alternate days) for large birds, birds of prey, hedgehogs, and freshwater turtles; and 2 day-interval for carnivores. Multiple factors influenced the persistence probabilities of vertebrate carcasses on the road. Overall, the persistence was much lower for small animals, on roads with lower traffic volumes, for carcasses located on road lanes, and during humid conditions and high temperatures during the wet season and dry seasons, respectively. Conclusion/Significance: The guidance given here on monitoring frequencies is particularly relevant to provide conservation and transportation agencies with accurate numbers of road-kills, realistic mitigation measures, and detailed designs for road monitoring programs

    Improving Decision Speed, Accuracy and Group Cohesion through Early Information Gathering in House-Hunting Ants

    Get PDF
    BACKGROUND: Successful collective decision-making depends on groups of animals being able to make accurate choices while maintaining group cohesion. However, increasing accuracy and/or cohesion usually decreases decision speed and vice-versa. Such trade-offs are widespread in animal decision-making and result in various decision-making strategies that emphasize either speed or accuracy, depending on the context. Speed-accuracy trade-offs have been the object of many theoretical investigations, but these studies did not consider the possible effects of previous experience and/or knowledge of individuals on such trade-offs. In this study, we investigated how previous knowledge of their environment may affect emigration speed, nest choice and colony cohesion in emigrations of the house-hunting ant Temnothorax albipennis, a collective decision-making process subject to a classical speed-accuracy trade-off. METHODOLOGY/PRINCIPAL FINDINGS: Colonies allowed to explore a high quality nest site for one week before they were forced to emigrate found that nest and accepted it faster than emigrating naïve colonies. This resulted in increased speed in single choice emigrations and higher colony cohesion in binary choice emigrations. Additionally, colonies allowed to explore both high and low quality nest sites for one week prior to emigration remained more cohesive, made more accurate decisions and emigrated faster than emigrating naïve colonies. CONCLUSIONS/SIGNIFICANCE: These results show that colonies gather and store information about available nest sites while their nest is still intact, and later retrieve and use this information when they need to emigrate. This improves colony performance. Early gathering of information for later use is therefore an effective strategy allowing T. albipennis colonies to improve simultaneously all aspects of the decision-making process--i.e. speed, accuracy and cohesion--and partly circumvent the speed-accuracy trade-off classically observed during emigrations. These findings should be taken into account in future studies on speed-accuracy trade-offs

    Uncovering Ultrastructural Defences in Daphnia magna — An Interdisciplinary Approach to Assess the Predator-Induced Fortification of the Carapace

    Get PDF
    The development of structural defences, such as the fortification of shells or exoskeletons, is a widespread strategy to reduce predator attack efficiency. In unpredictable environments these defences may be more pronounced in the presence of a predator. The cladoceran Daphnia magna (Crustacea: Branchiopoda: Cladocera) has been shown to develop a bulky morphotype as an effective inducible morphological defence against the predatory tadpole shrimp Triops cancriformis (Crustacea: Branchiopoda: Notostraca). Mediated by kairomones, the daphnids express an increased body length, width and an elongated tail spine. Here we examined whether these large scale morphological defences are accompanied by additional ultrastructural defences, i.e. a fortification of the exoskeleton. We employed atomic force microscopy (AFM) based nanoindentation experiments to assess the cuticle hardness along with tapping mode AFM imaging to visualise the surface morphology for predator exposed and non-predator exposed daphnids. We used semi-thin sections of the carapace to measure the cuticle thickness, and finally, we used fluorescence microscopy to analyse the diameter of the pillars connecting the two carapace layers. We found that D. magna indeed expresses ultrastructural defences against Triops predation. The cuticle in predator exposed individuals is approximately five times harder and two times thicker than in control daphnids. Moreover, the pillar diameter is significantly increased in predator exposed daphnids. These predator-cue induced changes in the carapace architecture should provide effective protection against being crushed by the predator's mouthparts and may add to the protective effect of bulkiness. This study highlights the potential of interdisciplinary studies to uncover new and relevant aspects even in extensively studied fields of research
    corecore