3,498 research outputs found

### Searches for production of two Higgs bosons using the CMS detector

AbstractFour searches for the production of two Higgs bosons using the CMS detector are presented. The analyses are performed on pp collision data collected during the Run I of the LHC at s=7Â âÂ 8Â TeV corresponding to an integrated luminosity of 5.1 â 17.9-19.7 fbâ1. The analyses are covering the resonant production of Higgs boson pairs in the bbâŸÎłÎł and bbâŸbbâŸ final states for masses between 260 and 1100 GeV, the resonant production of Higgs boson pairs in multilepton and diphoton final states for masses between 260 and 360 GeV, as well as additional Higgs boson-like states in the diphoton spectrum for masses between 110 and 150 GeV. The observations are compatible with expectations from standard model processes, and upper limits at 95% confidence-level are extracted on the production cross section of new particles

### Effective field theory analysis of double Higgs boson production via gluon fusion

We perform a detailed study of double Higgs production via gluon fusion in the effective field theory (EFT) framework where effects from new physics (NP) are parametrized by local operators. Our analysis provides a perspective broader than the one followed in most of the previous analyses, where this process was merely considered as a way to extract the Higgs trilinear coupling. We focus on the hh\u2192bb\uaf\u3b3\u3b3 channel and perform a thorough simulation of signal and background at the 14 TeV LHC and a future 100 TeV proton-proton collider. We make use of invariant mass distributions to enhance the sensitivity on the EFT coefficients and give a first assessment of the impact of jet substructure techniques on the results. The range of validity of the EFT description is estimated, as required to consistently exploit the high-energy range of distributions, pointing out the potential relevance of dimension-8 operators. Our analysis contains a few important improvements over previous studies and identifies some inaccuracies there appearing in connection with the estimate of signal and background rates. The estimated precision on the Higgs trilinear coupling that follows from our results is less optimistic than previously claimed in the literature. We find that a 3c30% accuracy can be reached on the trilinear coupling at a future 100 TeV collider with 3 ab-1. Only an O(1) determination instead seems possible at the LHC with the same amount of integrated luminosit

### Higgs boson production via vector-like top-partner decays: diphoton or multilepton plus multijets channels at the LHC

We first build a minimal model of vector-like quarks where the dominant Higgs
boson production process at LHC -- the gluon fusion -- can be significantly
suppressed, being motivated by the recent stringent constraints from the search
for direct Higgs production over a wide Higgs mass range. Within this model,
compatible with the present experimental constraints on direct Higgs searches,
we demonstrate that the Higgs ($h$) production via a heavy vector-like
top-partner ($t_2$) decay, $pp \to t_2 \bar t_2$, $t_2\to t h$, allows to
discover a Higgs boson at the LHC and measure its mass, through the decay
channels $h\to \gamma\gamma$ or $h\to ZZ$. We also comment on the recent hint
in LHC data from a possible $\sim 125$ GeV Higgs scalar, in the presence of
heavy vector-like top quarks.Comment: 14 pages, 8 figure

### Huge Electro-/photo-/acidoinduced Second-order Nonlinear Contrasts from Multiaddressable Indolinooxazolodine

In this work, linear and nonlinear optical properties of electro-/acido-/photoswitchable indolino[2,1-b]oxazolidine derivatives were investigated. The linear optical properties of the closed and open forms have been characterized by UVâvisible and IR spectroscopies associated with DFT calculations. Nonlinear optical properties of the compounds have been obtained by ex situ and in situ hyper-Rayleigh experiments in solution. We show that protonated, oxidized, and irradiated open forms exhibit the same visible absorption and NLO features. In particular, the closed and open forms exhibit a huge contrast of the first hyperpolarizability with an enhancement factor of 40â45. Additionally, we have designed an original electrochemical cell that allows to monitor in situ the hyper-Rayleigh response upon electrical stimulus. We report notably a partial but good and reversible NLO contrast in situ during oxidation/reduction cycles. Thereby, indolinooxazolidine moieties are versatile trimodal switchable units which are very promising for applications in devices

### A Mission to Explore the Pioneer Anomaly

The Pioneer 10 and 11 spacecraft yielded the most precise navigation in deep
space to date. These spacecraft had exceptional acceleration sensitivity.
However, analysis of their radio-metric tracking data has consistently
indicated that at heliocentric distances of $\sim 20-70$ astronomical units,
the orbit determinations indicated the presence of a small, anomalous, Doppler
frequency drift. The drift is a blue-shift, uniformly changing with a rate of
$\sim(5.99 \pm 0.01)\times 10^{-9}$ Hz/s, which can be interpreted as a
constant sunward acceleration of each particular spacecraft of $a_P = (8.74 \pm
1.33)\times 10^{-10} {\rm m/s^2}$. This signal has become known as the Pioneer
anomaly. The inability to explain the anomalous behavior of the Pioneers with
conventional physics has contributed to growing discussion about its origin.
There is now an increasing number of proposals that attempt to explain the
anomaly outside conventional physics. This progress emphasizes the need for a
new experiment to explore the detected signal. Furthermore, the recent
extensive efforts led to the conclusion that only a dedicated experiment could
ultimately determine the nature of the found signal. We discuss the Pioneer
anomaly and present the next steps towards an understanding of its origin. We
specifically focus on the development of a mission to explore the Pioneer
Anomaly in a dedicated experiment conducted in deep space.Comment: 8 pages, 9 figures; invited talk given at the 2005 ESLAB Symposium
"Trends in Space Science and Cosmic Vision 2020", 19-21 April 2005, ESTEC,
Noordwijk, The Netherland

### Fundamental Physics with the Laser Astrometric Test Of Relativity

The Laser Astrometric Test Of Relativity (LATOR) is a joint European-U.S.
Michelson-Morley-type experiment designed to test the pure tensor metric nature
of gravitation - a fundamental postulate of Einstein's theory of general
relativity. By using a combination of independent time-series of highly
accurate gravitational deflection of light in the immediate proximity to the
Sun, along with measurements of the Shapiro time delay on interplanetary scales
(to a precision respectively better than 0.1 picoradians and 1 cm), LATOR will
significantly improve our knowledge of relativistic gravity. The primary
mission objective is to i) measure the key post-Newtonian Eddington parameter
\gamma with accuracy of a part in 10^9. (1-\gamma) is a direct measure for
presence of a new interaction in gravitational theory, and, in its search,
LATOR goes a factor 30,000 beyond the present best result, Cassini's 2003 test.
The mission will also provide: ii) first measurement of gravity's non-linear
effects on light to ~0.01% accuracy; including both the Eddington \beta
parameter and also the spatial metric's 2nd order potential contribution (never
measured before); iii) direct measurement of the solar quadrupole moment J2
(currently unavailable) to accuracy of a part in 200 of its expected size; iv)
direct measurement of the "frame-dragging" effect on light by the Sun's
gravitomagnetic field, to 1% accuracy. LATOR's primary measurement pushes to
unprecedented accuracy the search for cosmologically relevant scalar-tensor
theories of gravity by looking for a remnant scalar field in today's solar
system. We discuss the mission design of this proposed experiment.Comment: 8 pages, 9 figures; invited talk given at the 2005 ESLAB Symposium
"Trends in Space Science and Cosmic Vision 2020," 19-21 April 2005, ESTEC,
Noodrwijk, The Netherland

Recommended from our members

### Measurement of double-differential cross sections for top quark pair production in pp collisions at [Formula: see text][Formula: see text] and impact on parton distribution functions.

Normalized double-differential cross sections for top quark pair ([Formula: see text]) production are measured in pp collisions at a centre-of-mass energy of 8[Formula: see text] with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 19.7[Formula: see text]. The measurement is performed in the dilepton [Formula: see text] final state. The [Formula: see text] cross section is determined as a function of various pairs of observables characterizing the kinematics of the top quark and [Formula: see text] system. The data are compared to calculations using perturbative quantum chromodynamics at next-to-leading and approximate next-to-next-to-leading orders. They are also compared to predictions of Monte Carlo event generators that complement fixed-order computations with parton showers, hadronization, and multiple-parton interactions. Overall agreement is observed with the predictions, which is improved when the latest global sets of proton parton distribution functions are used. The inclusion of the measured [Formula: see text] cross sections in a fit of parametrized parton distribution functions is shown to have significant impact on the gluon distribution

Recommended from our members

### Measurement of the [Formula: see text] production cross section using events in the [Formula: see text] final state in pp collisions at [Formula: see text].

The cross section of top quark-antiquark pair production in proton-proton collisions at [Formula: see text] is measured by the CMS experiment at the LHC, using data corresponding to an integrated luminosity of 2.2[Formula: see text]. The measurement is performed by analyzing events in which the final state includes one electron, one muon, and two or more jets, at least one of which is identified as originating from hadronization of a b quark. The measured cross section is [Formula: see text], in agreement with the expectation from the standard model

Recommended from our members

### Measurement of prompt and nonprompt [Formula: see text] production in [Formula: see text] and [Formula: see text] collisions at [Formula: see text].

This paper reports the measurement of [Formula: see text] meson production in proton-proton ([Formula: see text]) and proton-lead ([Formula: see text]) collisions at a center-of-mass energy per nucleon pair of [Formula: see text] by the CMS experiment at the LHC. The data samples used in the analysis correspond to integrated luminosities of 28[Formula: see text] and 35[Formula: see text] for [Formula: see text] and [Formula: see text] collisions, respectively. Prompt and nonprompt [Formula: see text] mesons, the latter produced in the decay of [Formula: see text] hadrons, are measured in their dimuon decay channels. Differential cross sections are measured in the transverse momentum range of [Formula: see text], and center-of-mass rapidity ranges of [Formula: see text] ([Formula: see text]) and [Formula: see text] ([Formula: see text]). The nuclear modification factor, [Formula: see text], is measured as a function of both [Formula: see text] and [Formula: see text]. Small modifications to the [Formula: see text] cross sections are observed in [Formula: see text] relative to [Formula: see text] collisions. The ratio of [Formula: see text] production cross sections in [Formula: see text]-going and Pb-going directions, [Formula: see text], studied as functions of [Formula: see text] and [Formula: see text], shows a significant decrease for increasing transverse energy deposited at large pseudorapidities. These results, which cover a wide kinematic range, provide new insight on the role of cold nuclear matter effects on prompt and nonprompt [Formula: see text] production

- âŠ